Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nclem2 Structured version   Visualization version   GIF version

Theorem itgmulc2nclem2 32647
 Description: Lemma for itgmulc2nc 32648; cf. itgmulc2lem2 23405. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
itgmulc2nc.4 (𝜑𝐶 ∈ ℝ)
itgmulc2nc.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
itgmulc2nclem2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nclem2
StepHypRef Expression
1 itgmulc2nc.4 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
2 max0sub 11901 . . . . . . 7 (𝐶 ∈ ℝ → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
31, 2syl 17 . . . . . 6 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) = 𝐶)
43oveq1d 6564 . . . . 5 (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · 𝐵) = (𝐶 · 𝐵))
54adantr 480 . . . 4 ((𝜑𝑥𝐴) → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · 𝐵) = (𝐶 · 𝐵))
6 0re 9919 . . . . . . . 8 0 ∈ ℝ
7 ifcl 4080 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
81, 6, 7sylancl 693 . . . . . . 7 (𝜑 → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
98recnd 9947 . . . . . 6 (𝜑 → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
109adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
111renegcld 10336 . . . . . . . 8 (𝜑 → -𝐶 ∈ ℝ)
12 ifcl 4080 . . . . . . . 8 ((-𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
1311, 6, 12sylancl 693 . . . . . . 7 (𝜑 → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
1413recnd 9947 . . . . . 6 (𝜑 → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ)
1514adantr 480 . . . . 5 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℂ)
16 itgmulc2nc.5 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
1716recnd 9947 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
1810, 15, 17subdird 10366 . . . 4 ((𝜑𝑥𝐴) → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)))
195, 18eqtr3d 2646 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)))
2019itgeq2dv 23354 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) d𝑥)
21 ovex 6577 . . . 4 (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) ∈ V
2221a1i 11 . . 3 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) ∈ V)
23 itgmulc2nc.3 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
24 itgmulc2nc.m . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
25 ovex 6577 . . . . . . . 8 (𝐶 · 𝐵) ∈ V
2625a1i 11 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ V)
2724, 26mbfdm2 23211 . . . . . 6 (𝜑𝐴 ∈ dom vol)
288adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
29 fconstmpt 5085 . . . . . . 7 (𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) = (𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0))
3029a1i 11 . . . . . 6 (𝜑 → (𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) = (𝑥𝐴 ↦ if(0 ≤ 𝐶, 𝐶, 0)))
31 eqidd 2611 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
3227, 28, 16, 30, 31offval2 6812 . . . . 5 (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘𝑓 · (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)))
33 iblmbf 23340 . . . . . . 7 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
3423, 33syl 17 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
35 eqid 2610 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3617, 35fmptd 6292 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
3734, 8, 36mbfmulc2re 23221 . . . . 5 (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘𝑓 · (𝑥𝐴𝐵)) ∈ MblFn)
3832, 37eqeltrrd 2689 . . . 4 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)) ∈ MblFn)
399, 16, 23, 38iblmulc2nc 32645 . . 3 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)) ∈ 𝐿1)
40 ovex 6577 . . . 4 (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) ∈ V
4140a1i 11 . . 3 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) ∈ V)
4213adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ∈ ℝ)
43 fconstmpt 5085 . . . . . . 7 (𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) = (𝑥𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0))
4443a1i 11 . . . . . 6 (𝜑 → (𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) = (𝑥𝐴 ↦ if(0 ≤ -𝐶, -𝐶, 0)))
4527, 42, 16, 44, 31offval2 6812 . . . . 5 (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘𝑓 · (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)))
4634, 13, 36mbfmulc2re 23221 . . . . 5 (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘𝑓 · (𝑥𝐴𝐵)) ∈ MblFn)
4745, 46eqeltrrd 2689 . . . 4 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) ∈ MblFn)
4814, 16, 23, 47iblmulc2nc 32645 . . 3 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) ∈ 𝐿1)
4919mpteq2dva 4672 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) = (𝑥𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵))))
5049, 24eqeltrrd 2689 . . 3 (𝜑 → (𝑥𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵))) ∈ MblFn)
5122, 39, 41, 48, 50itgsubnc 32642 . 2 (𝜑 → ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) − (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) d𝑥 = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥))
52 ovex 6577 . . . . . . 7 (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) ∈ V
5352a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) ∈ V)
54 ifcl 4080 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
5516, 6, 54sylancl 693 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ)
5616iblre 23366 . . . . . . . . 9 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)))
5723, 56mpbid 221 . . . . . . . 8 (𝜑 → ((𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1))
5857simpld 474 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ 𝐿1)
59 eqidd 2611 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
6027, 28, 55, 30, 59offval2 6812 . . . . . . . 8 (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘𝑓 · (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) = (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))))
6116, 34mbfpos 23224 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
6255recnd 9947 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℂ)
63 eqid 2610 . . . . . . . . . 10 (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))
6462, 63fmptd 6292 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)):𝐴⟶ℂ)
6561, 8, 64mbfmulc2re 23221 . . . . . . . 8 (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘𝑓 · (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) ∈ MblFn)
6660, 65eqeltrrd 2689 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈ MblFn)
679, 55, 58, 66iblmulc2nc 32645 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈ 𝐿1)
68 ovex 6577 . . . . . . 7 (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) ∈ V
6968a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) ∈ V)
7016renegcld 10336 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
71 ifcl 4080 . . . . . . . 8 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
7270, 6, 71sylancl 693 . . . . . . 7 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
7357simprd 478 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ 𝐿1)
74 eqidd 2611 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)))
7527, 28, 72, 30, 74offval2 6812 . . . . . . . 8 (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘𝑓 · (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) = (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
7616, 34mbfneg 23223 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ MblFn)
7770, 76mbfpos 23224 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) ∈ MblFn)
7872recnd 9947 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℂ)
79 eqid 2610 . . . . . . . . . 10 (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)) = (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))
8078, 79fmptd 6292 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0)):𝐴⟶ℂ)
8177, 8, 80mbfmulc2re 23221 . . . . . . . 8 (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘𝑓 · (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) ∈ MblFn)
8275, 81eqeltrrd 2689 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈ MblFn)
839, 72, 73, 82iblmulc2nc 32645 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈ 𝐿1)
84 max0sub 11901 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵)
8516, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0)) = 𝐵)
8685oveq2d 6565 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵))
8710, 62, 78subdid 10365 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
8886, 87eqtr3d 2646 . . . . . . . . 9 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) = ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
8988mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ 𝐶, 𝐶, 0) · 𝐵)) = (𝑥𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))))
9032, 89eqtrd 2644 . . . . . . 7 (𝜑 → ((𝐴 × {if(0 ≤ 𝐶, 𝐶, 0)}) ∘𝑓 · (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))))
9190, 37eqeltrrd 2689 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) ∈ MblFn)
9253, 67, 69, 83, 91itgsubnc 32642 . . . . 5 (𝜑 → ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥 = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
9388itgeq2dv 23354 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥)
9416, 23itgreval 23369 . . . . . . 7 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥))
9594oveq2d 6565 . . . . . 6 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) = (if(0 ≤ 𝐶, 𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)))
9655, 58itgcl 23356 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 ∈ ℂ)
9772, 73itgcl 23356 . . . . . . 7 (𝜑 → ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥 ∈ ℂ)
989, 96, 97subdid 10365 . . . . . 6 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)))
99 max1 11890 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
1006, 1, 99sylancr 694 . . . . . . . 8 (𝜑 → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
101 max1 11890 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
1026, 16, 101sylancr 694 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐵, 𝐵, 0))
1039, 55, 58, 66, 8, 55, 100, 102itgmulc2nclem1 32646 . . . . . . 7 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥)
104 max1 11890 . . . . . . . . 9 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
1056, 70, 104sylancr 694 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
1069, 72, 73, 82, 8, 72, 100, 105itgmulc2nclem1 32646 . . . . . . 7 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)
107103, 106oveq12d 6567 . . . . . 6 (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
10895, 98, 1073eqtrd 2648 . . . . 5 (𝜑 → (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) = (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
10992, 93, 1083eqtr4d 2654 . . . 4 (𝜑 → ∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 = (if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥))
110 ovex 6577 . . . . . . 7 (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) ∈ V
111110a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) ∈ V)
11227, 42, 55, 44, 59offval2 6812 . . . . . . . 8 (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘𝑓 · (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) = (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))))
11361, 13, 64mbfmulc2re 23221 . . . . . . . 8 (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘𝑓 · (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) ∈ MblFn)
114112, 113eqeltrrd 2689 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈ MblFn)
11514, 55, 58, 114iblmulc2nc 32645 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0))) ∈ 𝐿1)
116 ovex 6577 . . . . . . 7 (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) ∈ V
117116a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) ∈ V)
11827, 42, 72, 44, 74offval2 6812 . . . . . . . 8 (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘𝑓 · (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) = (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
11977, 13, 80mbfmulc2re 23221 . . . . . . . 8 (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘𝑓 · (𝑥𝐴 ↦ if(0 ≤ -𝐵, -𝐵, 0))) ∈ MblFn)
120118, 119eqeltrrd 2689 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈ MblFn)
12114, 72, 73, 120iblmulc2nc 32645 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) ∈ 𝐿1)
12285oveq2d 6565 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵))
12315, 62, 78subdid 10365 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · (if(0 ≤ 𝐵, 𝐵, 0) − if(0 ≤ -𝐵, -𝐵, 0))) = ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
124122, 123eqtr3d 2646 . . . . . . . . 9 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) = ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))))
125124mpteq2dva 4672 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (if(0 ≤ -𝐶, -𝐶, 0) · 𝐵)) = (𝑥𝐴 ↦ ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))))
12645, 125eqtrd 2644 . . . . . . 7 (𝜑 → ((𝐴 × {if(0 ≤ -𝐶, -𝐶, 0)}) ∘𝑓 · (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))))
127126, 46eqeltrrd 2689 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)))) ∈ MblFn)
128111, 115, 117, 121, 127itgsubnc 32642 . . . . 5 (𝜑 → ∫𝐴((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥 = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
129124itgeq2dv 23354 . . . . 5 (𝜑 → ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥 = ∫𝐴((if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) − (if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0))) d𝑥)
13094oveq2d 6565 . . . . . 6 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥) = (if(0 ≤ -𝐶, -𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)))
13114, 96, 97subdid 10365 . . . . . 6 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · (∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥 − ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = ((if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)))
132 max1 11890 . . . . . . . . 9 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0))
1336, 11, 132sylancr 694 . . . . . . . 8 (𝜑 → 0 ≤ if(0 ≤ -𝐶, -𝐶, 0))
13414, 55, 58, 114, 13, 55, 133, 102itgmulc2nclem1 32646 . . . . . . 7 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥)
13514, 72, 73, 120, 13, 72, 133, 105itgmulc2nclem1 32646 . . . . . . 7 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥) = ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥)
136134, 135oveq12d 6567 . . . . . 6 (𝜑 → ((if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ 𝐵, 𝐵, 0) d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴if(0 ≤ -𝐵, -𝐵, 0) d𝑥)) = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
137130, 131, 1363eqtrd 2648 . . . . 5 (𝜑 → (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥) = (∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ 𝐵, 𝐵, 0)) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · if(0 ≤ -𝐵, -𝐵, 0)) d𝑥))
138128, 129, 1373eqtr4d 2654 . . . 4 (𝜑 → ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥 = (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥))
139109, 138oveq12d 6567 . . 3 (𝜑 → (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥)))
14016, 23itgcl 23356 . . . 4 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
1419, 14, 140subdird 10366 . . 3 (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · ∫𝐴𝐵 d𝑥) = ((if(0 ≤ 𝐶, 𝐶, 0) · ∫𝐴𝐵 d𝑥) − (if(0 ≤ -𝐶, -𝐶, 0) · ∫𝐴𝐵 d𝑥)))
1423oveq1d 6564 . . 3 (𝜑 → ((if(0 ≤ 𝐶, 𝐶, 0) − if(0 ≤ -𝐶, -𝐶, 0)) · ∫𝐴𝐵 d𝑥) = (𝐶 · ∫𝐴𝐵 d𝑥))
143139, 141, 1423eqtr2d 2650 . 2 (𝜑 → (∫𝐴(if(0 ≤ 𝐶, 𝐶, 0) · 𝐵) d𝑥 − ∫𝐴(if(0 ≤ -𝐶, -𝐶, 0) · 𝐵) d𝑥) = (𝐶 · ∫𝐴𝐵 d𝑥))
14420, 51, 1433eqtrrd 2649 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  dom cdm 5038  (class class class)co 6549   ∘𝑓 cof 6793  ℂcc 9813  ℝcr 9814  0cc0 9815   · cmul 9820   ≤ cle 9954   − cmin 10145  -cneg 10146  volcvol 23039  MblFncmbf 23189  𝐿1cibl 23192  ∫citg 23193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243 This theorem is referenced by:  itgmulc2nc  32648
 Copyright terms: Public domain W3C validator