Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nc Structured version   Unicode version

Theorem itgmulc2nc 28463
Description: Choice-free analogue of itgmulc2 21314. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1  |-  ( ph  ->  C  e.  CC )
itgmulc2nc.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2nc.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgmulc2nc.m  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
Assertion
Ref Expression
itgmulc2nc  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgmulc2nc
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.1 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
21recld 12686 . . . . . . . 8  |-  ( ph  ->  ( Re `  C
)  e.  RR )
32recnd 9415 . . . . . . 7  |-  ( ph  ->  ( Re `  C
)  e.  CC )
43adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
5 itgmulc2nc.3 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
6 iblmbf 21248 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
75, 6syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
8 itgmulc2nc.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
97, 8mbfmptcl 21118 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
109recld 12686 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
1110recnd 9415 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
124, 11mulcld 9409 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Re
`  B ) )  e.  CC )
139iblcn 21279 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
145, 13mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
1514simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
16 itgmulc2nc.m . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
17 ovex 6119 . . . . . . . . . 10  |-  ( C  x.  B )  e. 
_V
1817a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  _V )
1916, 18mbfdm2 21119 . . . . . . . 8  |-  ( ph  ->  A  e.  dom  vol )
20 fconstmpt 4885 . . . . . . . . 9  |-  ( A  X.  { ( Re
`  C ) } )  =  ( x  e.  A  |->  ( Re
`  C ) )
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  ( A  X.  {
( Re `  C
) } )  =  ( x  e.  A  |->  ( Re `  C
) ) )
22 eqidd 2444 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  =  ( x  e.  A  |->  ( Re `  B ) ) )
2319, 4, 10, 21, 22offval2 6339 . . . . . . 7  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Re
`  B ) ) ) )
24 iblmbf 21248 . . . . . . . . 9  |-  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1 
->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
2515, 24syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
26 eqid 2443 . . . . . . . . 9  |-  ( x  e.  A  |->  ( Re
`  B ) )  =  ( x  e.  A  |->  ( Re `  B ) )
2711, 26fmptd 5870 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) ) : A --> CC )
2825, 2, 27mbfmulc2re 21129 . . . . . . 7  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
2923, 28eqeltrrd 2518 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Re `  B )
) )  e. MblFn )
303, 10, 15, 29iblmulc2nc 28460 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Re `  B )
) )  e.  L^1 )
3112, 30itgcl 21264 . . . 4  |-  ( ph  ->  S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  e.  CC )
32 ax-icn 9344 . . . . 5  |-  _i  e.  CC
339imcld 12687 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
3433recnd 9415 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
354, 34mulcld 9409 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Im
`  B ) )  e.  CC )
3614simprd 463 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
37 eqidd 2444 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  =  ( x  e.  A  |->  ( Im `  B ) ) )
3819, 4, 33, 21, 37offval2 6339 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Im
`  B ) ) ) )
39 iblmbf 21248 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 
->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
4036, 39syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
41 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  A  |->  ( Im
`  B ) )  =  ( x  e.  A  |->  ( Im `  B ) )
4234, 41fmptd 5870 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) ) : A --> CC )
4340, 2, 42mbfmulc2re 21129 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
4438, 43eqeltrrd 2518 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Im `  B )
) )  e. MblFn )
453, 33, 36, 44iblmulc2nc 28460 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Im `  B )
) )  e.  L^1 )
4635, 45itgcl 21264 . . . . 5  |-  ( ph  ->  S. A ( ( Re `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
47 mulcl 9369 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  e.  CC )  -> 
( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x )  e.  CC )
4832, 46, 47sylancr 663 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x )  e.  CC )
491imcld 12687 . . . . . . . . 9  |-  ( ph  ->  ( Im `  C
)  e.  RR )
5049recnd 9415 . . . . . . . 8  |-  ( ph  ->  ( Im `  C
)  e.  CC )
5150negcld 9709 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  C )  e.  CC )
5251adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  CC )
5352, 34mulcld 9409 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
54 fconstmpt 4885 . . . . . . . . 9  |-  ( A  X.  { -u (
Im `  C ) } )  =  ( x  e.  A  |->  -u ( Im `  C ) )
5554a1i 11 . . . . . . . 8  |-  ( ph  ->  ( A  X.  { -u ( Im `  C
) } )  =  ( x  e.  A  |-> 
-u ( Im `  C ) ) )
5619, 52, 33, 55, 37offval2 6339 . . . . . . 7  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  (
-u ( Im `  C )  x.  (
Im `  B )
) ) )
5749renegcld 9778 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  C )  e.  RR )
5840, 57, 42mbfmulc2re 21129 . . . . . . 7  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
5956, 58eqeltrrd 2518 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( -u ( Im
`  C )  x.  ( Im `  B
) ) )  e. MblFn
)
6051, 33, 36, 59iblmulc2nc 28460 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( -u ( Im
`  C )  x.  ( Im `  B
) ) )  e.  L^1 )
6153, 60itgcl 21264 . . . 4  |-  ( ph  ->  S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
6250adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
6362, 11mulcld 9409 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Re
`  B ) )  e.  CC )
64 fconstmpt 4885 . . . . . . . . . 10  |-  ( A  X.  { ( Im
`  C ) } )  =  ( x  e.  A  |->  ( Im
`  C ) )
6564a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( A  X.  {
( Im `  C
) } )  =  ( x  e.  A  |->  ( Im `  C
) ) )
6619, 62, 10, 65, 22offval2 6339 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
6725, 49, 27mbfmulc2re 21129 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
6866, 67eqeltrrd 2518 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Re `  B )
) )  e. MblFn )
6950, 10, 15, 68iblmulc2nc 28460 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Re `  B )
) )  e.  L^1 )
7063, 69itgcl 21264 . . . . 5  |-  ( ph  ->  S. A ( ( Im `  C )  x.  ( Re `  B ) )  _d x  e.  CC )
71 mulcl 9369 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x  e.  CC )  -> 
( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  e.  CC )
7232, 70, 71sylancr 663 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  e.  CC )
7331, 48, 61, 72add4d 9596 . . 3  |-  ( ph  ->  ( ( S. A
( ( Re `  C )  x.  (
Re `  B )
)  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) )  +  ( S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  +  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) ) )  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  +  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
7432a1i 11 . . . . . 6  |-  ( ph  ->  _i  e.  CC )
7574, 50mulcld 9409 . . . . 5  |-  ( ph  ->  ( _i  x.  (
Im `  C )
)  e.  CC )
768, 5itgcl 21264 . . . . 5  |-  ( ph  ->  S. A B  _d x  e.  CC )
773, 75, 76adddird 9414 . . . 4  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( ( ( Re `  C
)  x.  S. A B  _d x )  +  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x ) ) )
788, 5itgcnval 21280 . . . . . . 7  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
7978oveq2d 6110 . . . . . 6  |-  ( ph  ->  ( ( Re `  C )  x.  S. A B  _d x
)  =  ( ( Re `  C )  x.  ( S. A
( Re `  B
)  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
8010, 15itgcl 21264 . . . . . . 7  |-  ( ph  ->  S. A ( Re
`  B )  _d x  e.  CC )
8133, 36itgcl 21264 . . . . . . . 8  |-  ( ph  ->  S. A ( Im
`  B )  _d x  e.  CC )
82 mulcl 9369 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  S. A ( Im `  B )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
8332, 81, 82sylancr 663 . . . . . . 7  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
843, 80, 83adddid 9413 . . . . . 6  |-  ( ph  ->  ( ( Re `  C )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( ( Re
`  C )  x.  S. A ( Re
`  B )  _d x )  +  ( ( Re `  C
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
853, 10, 15, 29, 2, 10itgmulc2nclem2 28462 . . . . . . 7  |-  ( ph  ->  ( ( Re `  C )  x.  S. A ( Re `  B )  _d x )  =  S. A
( ( Re `  C )  x.  (
Re `  B )
)  _d x )
863, 74, 81mul12d 9581 . . . . . . . 8  |-  ( ph  ->  ( ( Re `  C )  x.  (
_i  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  ( ( Re
`  C )  x.  S. A ( Im
`  B )  _d x ) ) )
873, 33, 36, 44, 2, 33itgmulc2nclem2 28462 . . . . . . . . 9  |-  ( ph  ->  ( ( Re `  C )  x.  S. A ( Im `  B )  _d x )  =  S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x )
8887oveq2d 6110 . . . . . . . 8  |-  ( ph  ->  ( _i  x.  (
( Re `  C
)  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )
8986, 88eqtrd 2475 . . . . . . 7  |-  ( ph  ->  ( ( Re `  C )  x.  (
_i  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )
9085, 89oveq12d 6112 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  C )  x.  S. A ( Re
`  B )  _d x )  +  ( ( Re `  C
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) ) )
9179, 84, 903eqtrd 2479 . . . . 5  |-  ( ph  ->  ( ( Re `  C )  x.  S. A B  _d x
)  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) ) )
9278oveq2d 6110 . . . . . 6  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x )  =  ( ( _i  x.  ( Im `  C ) )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
9375, 80, 83adddid 9413 . . . . . 6  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
9474, 50, 80mulassd 9412 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A
( Re `  B
)  _d x )  =  ( _i  x.  ( ( Im `  C )  x.  S. A ( Re `  B )  _d x ) ) )
9550, 10, 15, 68, 49, 10itgmulc2nclem2 28462 . . . . . . . . . 10  |-  ( ph  ->  ( ( Im `  C )  x.  S. A ( Re `  B )  _d x )  =  S. A
( ( Im `  C )  x.  (
Re `  B )
)  _d x )
9695oveq2d 6110 . . . . . . . . 9  |-  ( ph  ->  ( _i  x.  (
( Im `  C
)  x.  S. A
( Re `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
9794, 96eqtrd 2475 . . . . . . . 8  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A
( Re `  B
)  _d x )  =  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) )
9874, 50, 74, 81mul4d 9584 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( _i  x.  S. A ( Im `  B )  _d x ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) ) )
99 ixi 9968 . . . . . . . . . . 11  |-  ( _i  x.  _i )  = 
-u 1
10099oveq1i 6104 . . . . . . . . . 10  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  C )  x.  S. A ( Im
`  B )  _d x ) )  =  ( -u 1  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
10150, 81mulcld 9409 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x )  e.  CC )
102101mulm1d 9799 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )  =  -u ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
103100, 102syl5eq 2487 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  _i )  x.  (
( Im `  C
)  x.  S. A
( Im `  B
)  _d x ) )  =  -u (
( Im `  C
)  x.  S. A
( Im `  B
)  _d x ) )
10450, 81mulneg1d 9800 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  -u ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
10551, 33, 36, 59, 57, 33itgmulc2nclem2 28462 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
106104, 105eqtr3d 2477 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
10798, 103, 1063eqtrd 2479 . . . . . . . 8  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( _i  x.  S. A ( Im `  B )  _d x ) )  =  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x )
10897, 107oveq12d 6112 . . . . . . 7  |-  ( ph  ->  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( _i  x.  S. A
( ( Im `  C )  x.  (
Re `  B )
)  _d x )  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
10972, 61addcomd 9574 . . . . . . 7  |-  ( ph  ->  ( ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  =  ( S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
110108, 109eqtrd 2475 . . . . . 6  |-  ( ph  ->  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
11192, 93, 1103eqtrd 2479 . . . . 5  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x )  =  ( S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
11291, 111oveq12d 6112 . . . 4  |-  ( ph  ->  ( ( ( Re
`  C )  x.  S. A B  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  S. A B  _d x ) )  =  ( ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) )  +  ( S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  +  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) ) ) )
11377, 112eqtrd 2475 . . 3  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )  +  ( S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
11462, 34mulcld 9409 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
11519, 62, 33, 65, 37offval2 6339 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  ( ( Im `  C
)  x.  ( Im
`  B ) ) ) )
11640, 49, 42mbfmulc2re 21129 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
117115, 116eqeltrrd 2518 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Im `  B )
) )  e. MblFn )
11850, 33, 36, 117iblmulc2nc 28460 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Im `  B )
) )  e.  L^1 )
1191adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
120119, 9mulcld 9409 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
121 eqidd 2444 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  =  ( x  e.  A  |->  ( C  x.  B ) ) )
122 ref 12604 . . . . . . . . . . 11  |-  Re : CC
--> RR
123122a1i 11 . . . . . . . . . 10  |-  ( ph  ->  Re : CC --> RR )
124123feqmptd 5747 . . . . . . . . 9  |-  ( ph  ->  Re  =  ( k  e.  CC  |->  ( Re
`  k ) ) )
125 fveq2 5694 . . . . . . . . 9  |-  ( k  =  ( C  x.  B )  ->  (
Re `  k )  =  ( Re `  ( C  x.  B
) ) )
126120, 121, 124, 125fmptco 5879 . . . . . . . 8  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  =  ( x  e.  A  |->  ( Re `  ( C  x.  B ) ) ) )
127119, 9remuld 12710 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )
128127mpteq2dva 4381 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( C  x.  B )
) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Re `  B )
)  -  ( ( Im `  C )  x.  ( Im `  B ) ) ) ) )
129126, 128eqtrd 2475 . . . . . . 7  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Re `  B )
)  -  ( ( Im `  C )  x.  ( Im `  B ) ) ) ) )
130 eqid 2443 . . . . . . . . . . 11  |-  ( x  e.  A  |->  ( C  x.  B ) )  =  ( x  e.  A  |->  ( C  x.  B ) )
131120, 130fmptd 5870 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) ) : A --> CC )
132 ismbfcn 21112 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( C  x.  B ) ) : A --> CC  ->  ( ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn  <->  ( (
Re  o.  ( x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn ) ) )
133131, 132syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  x.  B ) )  e. MblFn  <->  ( ( Re  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn ) ) )
13416, 133mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( Re  o.  ( x  e.  A  |->  ( C  x.  B
) ) )  e. MblFn  /\  ( Im  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn )
)
135134simpld 459 . . . . . . 7  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn )
136129, 135eqeltrrd 2518 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )  e. MblFn )
13712, 30, 114, 118, 136itgsubnc 28457 . . . . 5  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Re
`  B ) )  -  ( ( Im
`  C )  x.  ( Im `  B
) ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  -  S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x ) )
138127itgeq2dv 21262 . . . . 5  |-  ( ph  ->  S. A ( Re
`  ( C  x.  B ) )  _d x  =  S. A
( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) )  _d x )
139114, 118itgneg 21284 . . . . . . . 8  |-  ( ph  -> 
-u S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x  =  S. A -u ( ( Im `  C )  x.  ( Im `  B ) )  _d x )
14062, 34mulneg1d 9800 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  =  -u ( ( Im
`  C )  x.  ( Im `  B
) ) )
141140itgeq2dv 21262 . . . . . . . 8  |-  ( ph  ->  S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  =  S. A -u ( ( Im `  C )  x.  (
Im `  B )
)  _d x )
142139, 141eqtr4d 2478 . . . . . . 7  |-  ( ph  -> 
-u S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
143142oveq2d 6110 . . . . . 6  |-  ( ph  ->  ( S. A ( ( Re `  C
)  x.  ( Re
`  B ) )  _d x  +  -u S. A ( ( Im
`  C )  x.  ( Im `  B
) )  _d x )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
144114, 118itgcl 21264 . . . . . . 7  |-  ( ph  ->  S. A ( ( Im `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
14531, 144negsubd 9728 . . . . . 6  |-  ( ph  ->  ( S. A ( ( Re `  C
)  x.  ( Re
`  B ) )  _d x  +  -u S. A ( ( Im
`  C )  x.  ( Im `  B
) )  _d x )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  -  S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x ) )
146143, 145eqtr3d 2477 . . . . 5  |-  ( ph  ->  ( S. A ( ( Re `  C
)  x.  ( Re
`  B ) )  _d x  +  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  -  S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x ) )
147137, 138, 1463eqtr4d 2485 . . . 4  |-  ( ph  ->  S. A ( Re
`  ( C  x.  B ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
148119, 9immuld 12711 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
149148itgeq2dv 21262 . . . . . . 7  |-  ( ph  ->  S. A ( Im
`  ( C  x.  B ) )  _d x  =  S. A
( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) )  _d x )
150 imf 12605 . . . . . . . . . . . . 13  |-  Im : CC
--> RR
151150a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  Im : CC --> RR )
152151feqmptd 5747 . . . . . . . . . . 11  |-  ( ph  ->  Im  =  ( k  e.  CC  |->  ( Im
`  k ) ) )
153 fveq2 5694 . . . . . . . . . . 11  |-  ( k  =  ( C  x.  B )  ->  (
Im `  k )  =  ( Im `  ( C  x.  B
) ) )
154120, 121, 152, 153fmptco 5879 . . . . . . . . . 10  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  =  ( x  e.  A  |->  ( Im `  ( C  x.  B ) ) ) )
155148mpteq2dva 4381 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( C  x.  B )
) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Im `  B )
)  +  ( ( Im `  C )  x.  ( Re `  B ) ) ) ) )
156154, 155eqtrd 2475 . . . . . . . . 9  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Im `  B )
)  +  ( ( Im `  C )  x.  ( Re `  B ) ) ) ) )
157134simprd 463 . . . . . . . . 9  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn )
158156, 157eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )  e. MblFn )
15935, 45, 63, 69, 158itgaddnc 28455 . . . . . . 7  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Im
`  B ) )  +  ( ( Im
`  C )  x.  ( Re `  B
) ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
160149, 159eqtrd 2475 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  ( C  x.  B ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
161160oveq2d 6110 . . . . 5  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x )  =  ( _i  x.  ( S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x  +  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
16274, 46, 70adddid 9413 . . . . 5  |-  ( ph  ->  ( _i  x.  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )  =  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
163161, 162eqtrd 2475 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x )  =  ( ( _i  x.  S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
164147, 163oveq12d 6112 . . 3  |-  ( ph  ->  ( S. A ( Re `  ( C  x.  B ) )  _d x  +  ( _i  x.  S. A
( Im `  ( C  x.  B )
)  _d x ) )  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  +  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
16573, 113, 1643eqtr4d 2485 . 2  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( S. A ( Re `  ( C  x.  B
) )  _d x  +  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x ) ) )
1661replimd 12689 . . 3  |-  ( ph  ->  C  =  ( ( Re `  C )  +  ( _i  x.  ( Im `  C ) ) ) )
167166oveq1d 6109 . 2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  ( ( ( Re `  C
)  +  ( _i  x.  ( Im `  C ) ) )  x.  S. A B  _d x ) )
1681, 8, 5, 16iblmulc2nc 28460 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L^1 )
169120, 168itgcnval 21280 . 2  |-  ( ph  ->  S. A ( C  x.  B )  _d x  =  ( S. A ( Re `  ( C  x.  B
) )  _d x  +  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x ) ) )
170165, 167, 1693eqtr4d 2485 1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2975   {csn 3880    e. cmpt 4353    X. cxp 4841   dom cdm 4843    o. ccom 4847   -->wf 5417   ` cfv 5421  (class class class)co 6094    oFcof 6321   CCcc 9283   RRcr 9284   1c1 9286   _ici 9287    + caddc 9288    x. cmul 9290    - cmin 9598   -ucneg 9599   Recre 12589   Imcim 12590   volcvol 20950  MblFncmbf 21097   L^1cibl 21100   S.citg 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-disj 4266  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-n0 10583  df-z 10650  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-sum 13167  df-rest 14364  df-topgen 14385  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-top 18506  df-bases 18508  df-topon 18509  df-cmp 18993  df-ovol 20951  df-vol 20952  df-mbf 21102  df-itg1 21103  df-itg2 21104  df-ibl 21105  df-itg 21106  df-0p 21151
This theorem is referenced by:  itgabsnc  28464
  Copyright terms: Public domain W3C validator