Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nc Structured version   Unicode version

Theorem itgmulc2nc 29660
Description: Choice-free analogue of itgmulc2 21975. (Contributed by Brendan Leahy, 19-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1  |-  ( ph  ->  C  e.  CC )
itgmulc2nc.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
itgmulc2nc.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
itgmulc2nc.m  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
Assertion
Ref Expression
itgmulc2nc  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Distinct variable groups:    x, A    x, C    ph, x    x, V
Allowed substitution hint:    B( x)

Proof of Theorem itgmulc2nc
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 itgmulc2nc.1 . . . . . . . . 9  |-  ( ph  ->  C  e.  CC )
21recld 12986 . . . . . . . 8  |-  ( ph  ->  ( Re `  C
)  e.  RR )
32recnd 9618 . . . . . . 7  |-  ( ph  ->  ( Re `  C
)  e.  CC )
43adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  C )  e.  CC )
5 itgmulc2nc.3 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  L^1 )
6 iblmbf 21909 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  B )  e.  L^1 
->  ( x  e.  A  |->  B )  e. MblFn )
75, 6syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  B )  e. MblFn )
8 itgmulc2nc.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
97, 8mbfmptcl 21779 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
109recld 12986 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  RR )
1110recnd 9618 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  B )  e.  CC )
124, 11mulcld 9612 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Re
`  B ) )  e.  CC )
139iblcn 21940 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  A  |->  B )  e.  L^1  <->  ( (
x  e.  A  |->  ( Re `  B ) )  e.  L^1 
/\  ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) ) )
145, 13mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1  /\  (
x  e.  A  |->  ( Im `  B ) )  e.  L^1 ) )
1514simpld 459 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e.  L^1 )
16 itgmulc2nc.m . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn )
17 ovex 6307 . . . . . . . . . 10  |-  ( C  x.  B )  e. 
_V
1817a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  _V )
1916, 18mbfdm2 21780 . . . . . . . 8  |-  ( ph  ->  A  e.  dom  vol )
20 fconstmpt 5042 . . . . . . . . 9  |-  ( A  X.  { ( Re
`  C ) } )  =  ( x  e.  A  |->  ( Re
`  C ) )
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  ( A  X.  {
( Re `  C
) } )  =  ( x  e.  A  |->  ( Re `  C
) ) )
22 eqidd 2468 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  =  ( x  e.  A  |->  ( Re `  B ) ) )
2319, 4, 10, 21, 22offval2 6538 . . . . . . 7  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Re
`  B ) ) ) )
24 iblmbf 21909 . . . . . . . . 9  |-  ( ( x  e.  A  |->  ( Re `  B ) )  e.  L^1 
->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
2515, 24syl 16 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) )  e. MblFn )
26 eqid 2467 . . . . . . . . 9  |-  ( x  e.  A  |->  ( Re
`  B ) )  =  ( x  e.  A  |->  ( Re `  B ) )
2711, 26fmptd 6043 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  B
) ) : A --> CC )
2825, 2, 27mbfmulc2re 21790 . . . . . . 7  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
2923, 28eqeltrrd 2556 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Re `  B )
) )  e. MblFn )
303, 10, 15, 29iblmulc2nc 29657 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Re `  B )
) )  e.  L^1 )
3112, 30itgcl 21925 . . . 4  |-  ( ph  ->  S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  e.  CC )
32 ax-icn 9547 . . . . 5  |-  _i  e.  CC
339imcld 12987 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  RR )
3433recnd 9618 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  B )  e.  CC )
354, 34mulcld 9612 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Re `  C
)  x.  ( Im
`  B ) )  e.  CC )
3614simprd 463 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e.  L^1 )
37 eqidd 2468 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  =  ( x  e.  A  |->  ( Im `  B ) ) )
3819, 4, 33, 21, 37offval2 6538 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  ( ( Re `  C
)  x.  ( Im
`  B ) ) ) )
39 iblmbf 21909 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( Im `  B ) )  e.  L^1 
->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
4036, 39syl 16 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) )  e. MblFn )
41 eqid 2467 . . . . . . . . . 10  |-  ( x  e.  A  |->  ( Im
`  B ) )  =  ( x  e.  A  |->  ( Im `  B ) )
4234, 41fmptd 6043 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  B
) ) : A --> CC )
4340, 2, 42mbfmulc2re 21790 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Re `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
4438, 43eqeltrrd 2556 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Im `  B )
) )  e. MblFn )
453, 33, 36, 44iblmulc2nc 29657 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Re `  C )  x.  (
Im `  B )
) )  e.  L^1 )
4635, 45itgcl 21925 . . . . 5  |-  ( ph  ->  S. A ( ( Re `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
47 mulcl 9572 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  e.  CC )  -> 
( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x )  e.  CC )
4832, 46, 47sylancr 663 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x )  e.  CC )
491imcld 12987 . . . . . . . . 9  |-  ( ph  ->  ( Im `  C
)  e.  RR )
5049recnd 9618 . . . . . . . 8  |-  ( ph  ->  ( Im `  C
)  e.  CC )
5150negcld 9913 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  C )  e.  CC )
5251adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  -u (
Im `  C )  e.  CC )
5352, 34mulcld 9612 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
54 fconstmpt 5042 . . . . . . . . 9  |-  ( A  X.  { -u (
Im `  C ) } )  =  ( x  e.  A  |->  -u ( Im `  C ) )
5554a1i 11 . . . . . . . 8  |-  ( ph  ->  ( A  X.  { -u ( Im `  C
) } )  =  ( x  e.  A  |-> 
-u ( Im `  C ) ) )
5619, 52, 33, 55, 37offval2 6538 . . . . . . 7  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  (
-u ( Im `  C )  x.  (
Im `  B )
) ) )
5749renegcld 9982 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  C )  e.  RR )
5840, 57, 42mbfmulc2re 21790 . . . . . . 7  |-  ( ph  ->  ( ( A  X.  { -u ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
5956, 58eqeltrrd 2556 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( -u ( Im
`  C )  x.  ( Im `  B
) ) )  e. MblFn
)
6051, 33, 36, 59iblmulc2nc 29657 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  ( -u ( Im
`  C )  x.  ( Im `  B
) ) )  e.  L^1 )
6153, 60itgcl 21925 . . . 4  |-  ( ph  ->  S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
6250adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  C )  e.  CC )
6362, 11mulcld 9612 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Re
`  B ) )  e.  CC )
64 fconstmpt 5042 . . . . . . . . . 10  |-  ( A  X.  { ( Im
`  C ) } )  =  ( x  e.  A  |->  ( Im
`  C ) )
6564a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( A  X.  {
( Im `  C
) } )  =  ( x  e.  A  |->  ( Im `  C
) ) )
6619, 62, 10, 65, 22offval2 6538 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  =  ( x  e.  A  |->  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
6725, 49, 27mbfmulc2re 21790 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Re `  B ) ) )  e. MblFn )
6866, 67eqeltrrd 2556 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Re `  B )
) )  e. MblFn )
6950, 10, 15, 68iblmulc2nc 29657 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Re `  B )
) )  e.  L^1 )
7063, 69itgcl 21925 . . . . 5  |-  ( ph  ->  S. A ( ( Im `  C )  x.  ( Re `  B ) )  _d x  e.  CC )
71 mulcl 9572 . . . . 5  |-  ( ( _i  e.  CC  /\  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x  e.  CC )  -> 
( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  e.  CC )
7232, 70, 71sylancr 663 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  e.  CC )
7331, 48, 61, 72add4d 9799 . . 3  |-  ( ph  ->  ( ( S. A
( ( Re `  C )  x.  (
Re `  B )
)  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) )  +  ( S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  +  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) ) )  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  +  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
7432a1i 11 . . . . . 6  |-  ( ph  ->  _i  e.  CC )
7574, 50mulcld 9612 . . . . 5  |-  ( ph  ->  ( _i  x.  (
Im `  C )
)  e.  CC )
768, 5itgcl 21925 . . . . 5  |-  ( ph  ->  S. A B  _d x  e.  CC )
773, 75, 76adddird 9617 . . . 4  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( ( ( Re `  C
)  x.  S. A B  _d x )  +  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x ) ) )
788, 5itgcnval 21941 . . . . . . 7  |-  ( ph  ->  S. A B  _d x  =  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )
7978oveq2d 6298 . . . . . 6  |-  ( ph  ->  ( ( Re `  C )  x.  S. A B  _d x
)  =  ( ( Re `  C )  x.  ( S. A
( Re `  B
)  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
8010, 15itgcl 21925 . . . . . . 7  |-  ( ph  ->  S. A ( Re
`  B )  _d x  e.  CC )
8133, 36itgcl 21925 . . . . . . . 8  |-  ( ph  ->  S. A ( Im
`  B )  _d x  e.  CC )
82 mulcl 9572 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  S. A ( Im `  B )  _d x  e.  CC )  -> 
( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
8332, 81, 82sylancr 663 . . . . . . 7  |-  ( ph  ->  ( _i  x.  S. A ( Im `  B )  _d x )  e.  CC )
843, 80, 83adddid 9616 . . . . . 6  |-  ( ph  ->  ( ( Re `  C )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( ( Re
`  C )  x.  S. A ( Re
`  B )  _d x )  +  ( ( Re `  C
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
853, 10, 15, 29, 2, 10itgmulc2nclem2 29659 . . . . . . 7  |-  ( ph  ->  ( ( Re `  C )  x.  S. A ( Re `  B )  _d x )  =  S. A
( ( Re `  C )  x.  (
Re `  B )
)  _d x )
863, 74, 81mul12d 9784 . . . . . . . 8  |-  ( ph  ->  ( ( Re `  C )  x.  (
_i  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  ( ( Re
`  C )  x.  S. A ( Im
`  B )  _d x ) ) )
873, 33, 36, 44, 2, 33itgmulc2nclem2 29659 . . . . . . . . 9  |-  ( ph  ->  ( ( Re `  C )  x.  S. A ( Im `  B )  _d x )  =  S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x )
8887oveq2d 6298 . . . . . . . 8  |-  ( ph  ->  ( _i  x.  (
( Re `  C
)  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )
8986, 88eqtrd 2508 . . . . . . 7  |-  ( ph  ->  ( ( Re `  C )  x.  (
_i  x.  S. A
( Im `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )
9085, 89oveq12d 6300 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  C )  x.  S. A ( Re
`  B )  _d x )  +  ( ( Re `  C
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) ) )
9179, 84, 903eqtrd 2512 . . . . 5  |-  ( ph  ->  ( ( Re `  C )  x.  S. A B  _d x
)  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) ) )
9278oveq2d 6298 . . . . . 6  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x )  =  ( ( _i  x.  ( Im `  C ) )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
9375, 80, 83adddid 9616 . . . . . 6  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( S. A ( Re `  B )  _d x  +  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) ) )
9474, 50, 80mulassd 9615 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A
( Re `  B
)  _d x )  =  ( _i  x.  ( ( Im `  C )  x.  S. A ( Re `  B )  _d x ) ) )
9550, 10, 15, 68, 49, 10itgmulc2nclem2 29659 . . . . . . . . . 10  |-  ( ph  ->  ( ( Im `  C )  x.  S. A ( Re `  B )  _d x )  =  S. A
( ( Im `  C )  x.  (
Re `  B )
)  _d x )
9695oveq2d 6298 . . . . . . . . 9  |-  ( ph  ->  ( _i  x.  (
( Im `  C
)  x.  S. A
( Re `  B
)  _d x ) )  =  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
9794, 96eqtrd 2508 . . . . . . . 8  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A
( Re `  B
)  _d x )  =  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) )
9874, 50, 74, 81mul4d 9787 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( _i  x.  S. A ( Im `  B )  _d x ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) ) )
99 ixi 10174 . . . . . . . . . . 11  |-  ( _i  x.  _i )  = 
-u 1
10099oveq1i 6292 . . . . . . . . . 10  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  C )  x.  S. A ( Im
`  B )  _d x ) )  =  ( -u 1  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
10150, 81mulcld 9612 . . . . . . . . . . 11  |-  ( ph  ->  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x )  e.  CC )
102101mulm1d 10004 . . . . . . . . . 10  |-  ( ph  ->  ( -u 1  x.  ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )  =  -u ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
103100, 102syl5eq 2520 . . . . . . . . 9  |-  ( ph  ->  ( ( _i  x.  _i )  x.  (
( Im `  C
)  x.  S. A
( Im `  B
)  _d x ) )  =  -u (
( Im `  C
)  x.  S. A
( Im `  B
)  _d x ) )
10450, 81mulneg1d 10005 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  -u ( ( Im `  C )  x.  S. A ( Im `  B )  _d x ) )
10551, 33, 36, 59, 57, 33itgmulc2nclem2 29659 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
106104, 105eqtr3d 2510 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( Im
`  C )  x.  S. A ( Im
`  B )  _d x )  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
10798, 103, 1063eqtrd 2512 . . . . . . . 8  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  ( _i  x.  S. A ( Im `  B )  _d x ) )  =  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x )
10897, 107oveq12d 6300 . . . . . . 7  |-  ( ph  ->  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( ( _i  x.  S. A
( ( Im `  C )  x.  (
Re `  B )
)  _d x )  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
10972, 61addcomd 9777 . . . . . . 7  |-  ( ph  ->  ( ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x )  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  =  ( S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
110108, 109eqtrd 2508 . . . . . 6  |-  ( ph  ->  ( ( ( _i  x.  ( Im `  C ) )  x.  S. A ( Re
`  B )  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  ( _i  x.  S. A ( Im `  B )  _d x ) ) )  =  ( S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
11192, 93, 1103eqtrd 2512 . . . . 5  |-  ( ph  ->  ( ( _i  x.  ( Im `  C ) )  x.  S. A B  _d x )  =  ( S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
11291, 111oveq12d 6300 . . . 4  |-  ( ph  ->  ( ( ( Re
`  C )  x.  S. A B  _d x )  +  ( ( _i  x.  (
Im `  C )
)  x.  S. A B  _d x ) )  =  ( ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  ( _i  x.  S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x ) )  +  ( S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  +  ( _i  x.  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) ) ) )
11377, 112eqtrd 2508 . . 3  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x ) )  +  ( S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
11462, 34mulcld 9612 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Im `  C
)  x.  ( Im
`  B ) )  e.  CC )
11519, 62, 33, 65, 37offval2 6538 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  =  ( x  e.  A  |->  ( ( Im `  C
)  x.  ( Im
`  B ) ) ) )
11640, 49, 42mbfmulc2re 21790 . . . . . . . 8  |-  ( ph  ->  ( ( A  X.  { ( Im `  C ) } )  oF  x.  (
x  e.  A  |->  ( Im `  B ) ) )  e. MblFn )
117115, 116eqeltrrd 2556 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Im `  B )
) )  e. MblFn )
11850, 33, 36, 117iblmulc2nc 29657 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( Im `  C )  x.  (
Im `  B )
) )  e.  L^1 )
1191adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  CC )
120119, 9mulcld 9612 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( C  x.  B )  e.  CC )
121 eqidd 2468 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  =  ( x  e.  A  |->  ( C  x.  B ) ) )
122 ref 12904 . . . . . . . . . . 11  |-  Re : CC
--> RR
123122a1i 11 . . . . . . . . . 10  |-  ( ph  ->  Re : CC --> RR )
124123feqmptd 5918 . . . . . . . . 9  |-  ( ph  ->  Re  =  ( k  e.  CC  |->  ( Re
`  k ) ) )
125 fveq2 5864 . . . . . . . . 9  |-  ( k  =  ( C  x.  B )  ->  (
Re `  k )  =  ( Re `  ( C  x.  B
) ) )
126120, 121, 124, 125fmptco 6052 . . . . . . . 8  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  =  ( x  e.  A  |->  ( Re `  ( C  x.  B ) ) ) )
127119, 9remuld 13010 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  (
Re `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )
128127mpteq2dva 4533 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( Re `  ( C  x.  B )
) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Re `  B )
)  -  ( ( Im `  C )  x.  ( Im `  B ) ) ) ) )
129126, 128eqtrd 2508 . . . . . . 7  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Re `  B )
)  -  ( ( Im `  C )  x.  ( Im `  B ) ) ) ) )
130 eqid 2467 . . . . . . . . . . 11  |-  ( x  e.  A  |->  ( C  x.  B ) )  =  ( x  e.  A  |->  ( C  x.  B ) )
131120, 130fmptd 6043 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) ) : A --> CC )
132 ismbfcn 21773 . . . . . . . . . 10  |-  ( ( x  e.  A  |->  ( C  x.  B ) ) : A --> CC  ->  ( ( x  e.  A  |->  ( C  x.  B
) )  e. MblFn  <->  ( (
Re  o.  ( x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn ) ) )
133131, 132syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  A  |->  ( C  x.  B ) )  e. MblFn  <->  ( ( Re  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn  /\  (
Im  o.  ( x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn ) ) )
13416, 133mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( ( Re  o.  ( x  e.  A  |->  ( C  x.  B
) ) )  e. MblFn  /\  ( Im  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn )
)
135134simpld 459 . . . . . . 7  |-  ( ph  ->  ( Re  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn )
136129, 135eqeltrrd 2556 . . . . . 6  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) ) )  e. MblFn )
13712, 30, 114, 118, 136itgsubnc 29654 . . . . 5  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Re
`  B ) )  -  ( ( Im
`  C )  x.  ( Im `  B
) ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  -  S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x ) )
138127itgeq2dv 21923 . . . . 5  |-  ( ph  ->  S. A ( Re
`  ( C  x.  B ) )  _d x  =  S. A
( ( ( Re
`  C )  x.  ( Re `  B
) )  -  (
( Im `  C
)  x.  ( Im
`  B ) ) )  _d x )
139114, 118itgneg 21945 . . . . . . . 8  |-  ( ph  -> 
-u S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x  =  S. A -u ( ( Im `  C )  x.  ( Im `  B ) )  _d x )
14062, 34mulneg1d 10005 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( -u ( Im `  C
)  x.  ( Im
`  B ) )  =  -u ( ( Im
`  C )  x.  ( Im `  B
) ) )
141140itgeq2dv 21923 . . . . . . . 8  |-  ( ph  ->  S. A ( -u ( Im `  C )  x.  ( Im `  B ) )  _d x  =  S. A -u ( ( Im `  C )  x.  (
Im `  B )
)  _d x )
142139, 141eqtr4d 2511 . . . . . . 7  |-  ( ph  -> 
-u S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x  =  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )
143142oveq2d 6298 . . . . . 6  |-  ( ph  ->  ( S. A ( ( Re `  C
)  x.  ( Re
`  B ) )  _d x  +  -u S. A ( ( Im
`  C )  x.  ( Im `  B
) )  _d x )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
144114, 118itgcl 21925 . . . . . . 7  |-  ( ph  ->  S. A ( ( Im `  C )  x.  ( Im `  B ) )  _d x  e.  CC )
14531, 144negsubd 9932 . . . . . 6  |-  ( ph  ->  ( S. A ( ( Re `  C
)  x.  ( Re
`  B ) )  _d x  +  -u S. A ( ( Im
`  C )  x.  ( Im `  B
) )  _d x )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  -  S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x ) )
146143, 145eqtr3d 2510 . . . . 5  |-  ( ph  ->  ( S. A ( ( Re `  C
)  x.  ( Re
`  B ) )  _d x  +  S. A ( -u (
Im `  C )  x.  ( Im `  B
) )  _d x )  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  -  S. A ( ( Im `  C
)  x.  ( Im
`  B ) )  _d x ) )
147137, 138, 1463eqtr4d 2518 . . . 4  |-  ( ph  ->  S. A ( Re
`  ( C  x.  B ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Re `  B
) )  _d x  +  S. A (
-u ( Im `  C )  x.  (
Im `  B )
)  _d x ) )
148119, 9immuld 13011 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
Im `  ( C  x.  B ) )  =  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )
149148itgeq2dv 21923 . . . . . . 7  |-  ( ph  ->  S. A ( Im
`  ( C  x.  B ) )  _d x  =  S. A
( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) )  _d x )
150 imf 12905 . . . . . . . . . . . . 13  |-  Im : CC
--> RR
151150a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  Im : CC --> RR )
152151feqmptd 5918 . . . . . . . . . . 11  |-  ( ph  ->  Im  =  ( k  e.  CC  |->  ( Im
`  k ) ) )
153 fveq2 5864 . . . . . . . . . . 11  |-  ( k  =  ( C  x.  B )  ->  (
Im `  k )  =  ( Im `  ( C  x.  B
) ) )
154120, 121, 152, 153fmptco 6052 . . . . . . . . . 10  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  =  ( x  e.  A  |->  ( Im `  ( C  x.  B ) ) ) )
155148mpteq2dva 4533 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  A  |->  ( Im `  ( C  x.  B )
) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Im `  B )
)  +  ( ( Im `  C )  x.  ( Re `  B ) ) ) ) )
156154, 155eqtrd 2508 . . . . . . . . 9  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  =  ( x  e.  A  |->  ( ( ( Re `  C )  x.  (
Im `  B )
)  +  ( ( Im `  C )  x.  ( Re `  B ) ) ) ) )
157134simprd 463 . . . . . . . . 9  |-  ( ph  ->  ( Im  o.  (
x  e.  A  |->  ( C  x.  B ) ) )  e. MblFn )
158156, 157eqeltrrd 2556 . . . . . . . 8  |-  ( ph  ->  ( x  e.  A  |->  ( ( ( Re
`  C )  x.  ( Im `  B
) )  +  ( ( Im `  C
)  x.  ( Re
`  B ) ) ) )  e. MblFn )
15935, 45, 63, 69, 158itgaddnc 29652 . . . . . . 7  |-  ( ph  ->  S. A ( ( ( Re `  C
)  x.  ( Im
`  B ) )  +  ( ( Im
`  C )  x.  ( Re `  B
) ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
160149, 159eqtrd 2508 . . . . . 6  |-  ( ph  ->  S. A ( Im
`  ( C  x.  B ) )  _d x  =  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )
161160oveq2d 6298 . . . . 5  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x )  =  ( _i  x.  ( S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x  +  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
16274, 46, 70adddid 9616 . . . . 5  |-  ( ph  ->  ( _i  x.  ( S. A ( ( Re
`  C )  x.  ( Im `  B
) )  _d x  +  S. A ( ( Im `  C
)  x.  ( Re
`  B ) )  _d x ) )  =  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
163161, 162eqtrd 2508 . . . 4  |-  ( ph  ->  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x )  =  ( ( _i  x.  S. A
( ( Re `  C )  x.  (
Im `  B )
)  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) )
164147, 163oveq12d 6300 . . 3  |-  ( ph  ->  ( S. A ( Re `  ( C  x.  B ) )  _d x  +  ( _i  x.  S. A
( Im `  ( C  x.  B )
)  _d x ) )  =  ( ( S. A ( ( Re `  C )  x.  ( Re `  B ) )  _d x  +  S. A
( -u ( Im `  C )  x.  (
Im `  B )
)  _d x )  +  ( ( _i  x.  S. A ( ( Re `  C
)  x.  ( Im
`  B ) )  _d x )  +  ( _i  x.  S. A ( ( Im
`  C )  x.  ( Re `  B
) )  _d x ) ) ) )
16573, 113, 1643eqtr4d 2518 . 2  |-  ( ph  ->  ( ( ( Re
`  C )  +  ( _i  x.  (
Im `  C )
) )  x.  S. A B  _d x
)  =  ( S. A ( Re `  ( C  x.  B
) )  _d x  +  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x ) ) )
1661replimd 12989 . . 3  |-  ( ph  ->  C  =  ( ( Re `  C )  +  ( _i  x.  ( Im `  C ) ) ) )
167166oveq1d 6297 . 2  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  ( ( ( Re `  C
)  +  ( _i  x.  ( Im `  C ) ) )  x.  S. A B  _d x ) )
1681, 8, 5, 16iblmulc2nc 29657 . . 3  |-  ( ph  ->  ( x  e.  A  |->  ( C  x.  B
) )  e.  L^1 )
169120, 168itgcnval 21941 . 2  |-  ( ph  ->  S. A ( C  x.  B )  _d x  =  ( S. A ( Re `  ( C  x.  B
) )  _d x  +  ( _i  x.  S. A ( Im `  ( C  x.  B
) )  _d x ) ) )
170165, 167, 1693eqtr4d 2518 1  |-  ( ph  ->  ( C  x.  S. A B  _d x
)  =  S. A
( C  x.  B
)  _d x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   {csn 4027    |-> cmpt 4505    X. cxp 4997   dom cdm 4999    o. ccom 5003   -->wf 5582   ` cfv 5586  (class class class)co 6282    oFcof 6520   CCcc 9486   RRcr 9487   1c1 9489   _ici 9490    + caddc 9491    x. cmul 9493    - cmin 9801   -ucneg 9802   Recre 12889   Imcim 12890   volcvol 21610  MblFncmbf 21758   L^1cibl 21761   S.citg 21762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-ofr 6523  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468  df-rest 14674  df-topgen 14695  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-top 19166  df-bases 19168  df-topon 19169  df-cmp 19653  df-ovol 21611  df-vol 21612  df-mbf 21763  df-itg1 21764  df-itg2 21765  df-ibl 21766  df-itg 21767  df-0p 21812
This theorem is referenced by:  itgabsnc  29661
  Copyright terms: Public domain W3C validator