MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2seq Structured version   Visualization version   GIF version

Theorem itg2seq 23315
Description: Definitional property of the 2 integral: for any function 𝐹 there is a countable sequence 𝑔 of simple functions less than 𝐹 whose integrals converge to the integral of 𝐹. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 23328, but unlike that theorem this one doesn't require 𝐹 to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.)
Assertion
Ref Expression
itg2seq (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Distinct variable group:   𝑔,𝑛,𝐹

Proof of Theorem itg2seq
Dummy variables 𝑓 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 10904 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
21ad2antlr 759 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 ∈ ℝ)
3 ltpnf 11830 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 𝑛 < +∞)
42, 3syl 17 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 < +∞)
5 iftrue 4042 . . . . . . . . . . 11 ((∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
65adantl 481 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
7 simpr 476 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → (∫2𝐹) = +∞)
84, 6, 73brtr4d 4615 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
9 iffalse 4045 . . . . . . . . . . 11 (¬ (∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
109adantl 481 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
11 itg2cl 23305 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
12 xrrebnd 11873 . . . . . . . . . . . . . . 15 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
1311, 12syl 17 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
14 itg2ge0 23308 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
15 mnflt0 11835 . . . . . . . . . . . . . . . . 17 -∞ < 0
16 mnfxr 9975 . . . . . . . . . . . . . . . . . . 19 -∞ ∈ ℝ*
17 0xr 9965 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
18 xrltletr 11864 . . . . . . . . . . . . . . . . . . 19 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
1916, 17, 18mp3an12 1406 . . . . . . . . . . . . . . . . . 18 ((∫2𝐹) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
2011, 19syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:ℝ⟶(0[,]+∞) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
2115, 20mpani 708 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → (0 ≤ (∫2𝐹) → -∞ < (∫2𝐹)))
2214, 21mpd 15 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → -∞ < (∫2𝐹))
2322biantrurd 528 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
24 nltpnft 11871 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2511, 24syl 17 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2625con2bid 343 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ ¬ (∫2𝐹) = +∞))
2713, 23, 263bitr2rd 296 . . . . . . . . . . . . 13 (𝐹:ℝ⟶(0[,]+∞) → (¬ (∫2𝐹) = +∞ ↔ (∫2𝐹) ∈ ℝ))
2827biimpa 500 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
2928adantlr 747 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
30 nnrp 11718 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3130rpreccld 11758 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
3231ad2antlr 759 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ+)
3329, 32ltsubrpd 11780 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) < (∫2𝐹))
3410, 33eqbrtrd 4605 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
358, 34pm2.61dan 828 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
36 nnrecre 10934 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
3736ad2antlr 759 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ)
3829, 37resubcld 10337 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) ∈ ℝ)
392, 38ifclda 4070 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
4039rexrd 9968 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
4111adantr 480 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ*)
42 xrltnle 9984 . . . . . . . . 9 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4340, 41, 42syl2anc 691 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4435, 43mpbid 221 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
45 itg2leub 23307 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4640, 45syldan 486 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4744, 46mtbid 313 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
48 rexanali 2981 . . . . . 6 (∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))) ↔ ¬ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4947, 48sylibr 223 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
50 itg1cl 23258 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
51 ltnle 9996 . . . . . . . 8 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ ∧ (∫1𝑓) ∈ ℝ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5239, 50, 51syl2an 493 . . . . . . 7 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5352anbi2d 736 . . . . . 6 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → ((𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ (𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5453rexbidva 3031 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5549, 54mpbird 246 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
5655ralrimiva 2949 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
57 ovex 6577 . . . . 5 (ℝ ↑𝑚 ℝ) ∈ V
58 i1ff 23249 . . . . . . 7 (𝑥 ∈ dom ∫1𝑥:ℝ⟶ℝ)
59 reex 9906 . . . . . . . 8 ℝ ∈ V
6059, 59elmap 7772 . . . . . . 7 (𝑥 ∈ (ℝ ↑𝑚 ℝ) ↔ 𝑥:ℝ⟶ℝ)
6158, 60sylibr 223 . . . . . 6 (𝑥 ∈ dom ∫1𝑥 ∈ (ℝ ↑𝑚 ℝ))
6261ssriv 3572 . . . . 5 dom ∫1 ⊆ (ℝ ↑𝑚 ℝ)
6357, 62ssexi 4731 . . . 4 dom ∫1 ∈ V
64 nnenom 12641 . . . 4 ℕ ≈ ω
65 breq1 4586 . . . . 5 (𝑓 = (𝑔𝑛) → (𝑓𝑟𝐹 ↔ (𝑔𝑛) ∘𝑟𝐹))
66 fveq2 6103 . . . . . 6 (𝑓 = (𝑔𝑛) → (∫1𝑓) = (∫1‘(𝑔𝑛)))
6766breq2d 4595 . . . . 5 (𝑓 = (𝑔𝑛) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))
6865, 67anbi12d 743 . . . 4 (𝑓 = (𝑔𝑛) → ((𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
6963, 64, 68axcc4 9144 . . 3 (∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
7056, 69syl 17 . 2 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
71 simprl 790 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → 𝑔:ℕ⟶dom ∫1)
72 simpl 472 . . . . . . 7 (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (𝑔𝑛) ∘𝑟𝐹)
7372ralimi 2936 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹)
7473ad2antll 761 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹)
75 fveq2 6103 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
7675fveq2d 6107 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (∫1‘(𝑔𝑛)) = (∫1‘(𝑔𝑚)))
7776cbvmptv 4678 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
7877rneqi 5273 . . . . . . . . . 10 ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
7978supeq1i 8236 . . . . . . . . 9 sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )
80 ffvelrn 6265 . . . . . . . . . . . . . . 15 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (𝑔𝑛) ∈ dom ∫1)
81 itg1cl 23258 . . . . . . . . . . . . . . 15 ((𝑔𝑛) ∈ dom ∫1 → (∫1‘(𝑔𝑛)) ∈ ℝ)
8280, 81syl 17 . . . . . . . . . . . . . 14 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
83 eqid 2610 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))
8482, 83fmptd 6292 . . . . . . . . . . . . 13 (𝑔:ℕ⟶dom ∫1 → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
8584ad2antrl 760 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
86 frn 5966 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
8785, 86syl 17 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
88 ressxr 9962 . . . . . . . . . . 11 ℝ ⊆ ℝ*
8987, 88syl6ss 3580 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
90 supxrcl 12017 . . . . . . . . . 10 (ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
9189, 90syl 17 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
9279, 91syl5eqelr 2693 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
93 elxr 11826 . . . . . . . . . . 11 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
94 simplrl 796 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
95 arch 11166 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
9694, 95syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
975adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
9897breq2d 4595 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < 𝑛))
9998rexbidv 3034 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛))
10096, 99mpbird 246 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
10128adantlr 747 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
102 simplrl 796 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
103101, 102resubcld 10337 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − 𝑥) ∈ ℝ)
104 simplrr 797 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 < (∫2𝐹))
105102, 101posdifd 10493 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (𝑥 < (∫2𝐹) ↔ 0 < ((∫2𝐹) − 𝑥)))
106104, 105mpbid 221 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 0 < ((∫2𝐹) − 𝑥))
107 nnrecl 11167 . . . . . . . . . . . . . . . . . 18 ((((∫2𝐹) − 𝑥) ∈ ℝ ∧ 0 < ((∫2𝐹) − 𝑥)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
108103, 106, 107syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
10936adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
110101adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ)
111102adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
112 ltsub13 10388 . . . . . . . . . . . . . . . . . . . 20 (((1 / 𝑛) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
113109, 110, 111, 112syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
1149ad2antlr 759 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
115114breq2d 4595 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
116113, 115bitr4d 270 . . . . . . . . . . . . . . . . . 18 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
117116rexbidva 3031 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
118108, 117mpbid 221 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
119100, 118pm2.61dan 828 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
120119expr 641 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
121 rexr 9964 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
122 xrltnle 9984 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
123121, 11, 122syl2anr 494 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
124121ad2antlr 759 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ*)
12540adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
126 xrltnle 9984 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
127124, 125, 126syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
128127rexbidva 3031 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
129 rexnal 2978 . . . . . . . . . . . . . . 15 (∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
130128, 129syl6bb 275 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
131120, 123, 1303imtr3d 281 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (¬ (∫2𝐹) ≤ 𝑥 → ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
132131con4d 113 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
13311adantr 480 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ∈ ℝ*)
134 pnfge 11840 . . . . . . . . . . . . . . 15 ((∫2𝐹) ∈ ℝ* → (∫2𝐹) ≤ +∞)
135133, 134syl 17 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ +∞)
136 simpr 476 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → 𝑥 = +∞)
137135, 136breqtrrd 4611 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ 𝑥)
138137a1d 25 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
139 1nn 10908 . . . . . . . . . . . . . . 15 1 ∈ ℕ
140139ne0ii 3882 . . . . . . . . . . . . . 14 ℕ ≠ ∅
141 r19.2z 4012 . . . . . . . . . . . . . 14 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥) → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
142140, 141mpan 702 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
14339adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
144 mnflt 11833 . . . . . . . . . . . . . . . . . 18 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → -∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
145 rexr 9964 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
146 xrltnle 9984 . . . . . . . . . . . . . . . . . . 19 ((-∞ ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
14716, 145, 146sylancr 694 . . . . . . . . . . . . . . . . . 18 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
148144, 147mpbid 221 . . . . . . . . . . . . . . . . 17 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
149143, 148syl 17 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
150 simplr 788 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → 𝑥 = -∞)
151150breq2d 4595 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
152149, 151mtbird 314 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
153152nrexdv 2984 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → ¬ ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
154153pm2.21d 117 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
155142, 154syl5 33 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
156132, 138, 1553jaodan 1386 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
15793, 156sylan2b 491 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ*) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
158157ralrimiva 2949 . . . . . . . . 9 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
159158adantr 480 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
16040adantlr 747 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
16182adantll 746 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
162161rexrd 9968 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ*)
163 xrltle 11858 . . . . . . . . . . . . 13 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
164160, 162, 163syl2anc 691 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
16584adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
166165, 86syl 17 . . . . . . . . . . . . . . . . 17 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
167166, 88syl6ss 3580 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
168167adantr 480 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
16978, 168syl5eqssr 3613 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ*)
170 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
171170fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (∫1‘(𝑔𝑚)) = (∫1‘(𝑔𝑛)))
172 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
173 fvex 6113 . . . . . . . . . . . . . . . . 17 (∫1‘(𝑔𝑛)) ∈ V
174171, 172, 173fvmpt 6191 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) = (∫1‘(𝑔𝑛)))
175 fvex 6113 . . . . . . . . . . . . . . . . . 18 (∫1‘(𝑔𝑚)) ∈ V
176175, 172fnmpti 5935 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ
177 fnfvelrn 6264 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
178176, 177mpan 702 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
179174, 178eqeltrrd 2689 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
180179adantl 481 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
181 supxrub 12026 . . . . . . . . . . . . . 14 ((ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
182169, 180, 181syl2anc 691 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
183168, 90syl 17 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
18479, 183syl5eqelr 2693 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
185 xrletr 11865 . . . . . . . . . . . . . 14 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ* ∧ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
186160, 162, 184, 185syl3anc 1318 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
187182, 186mpan2d 706 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
188164, 187syld 46 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
189188adantld 482 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
190189ralimdva 2945 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
191190impr 647 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
192 breq2 4587 . . . . . . . . . . 11 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
193192ralbidv 2969 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
194 breq2 4587 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∫2𝐹) ≤ 𝑥 ↔ (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
195193, 194imbi12d 333 . . . . . . . . 9 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥) ↔ (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))))
196195rspcv 3278 . . . . . . . 8 (sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ* → (∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))))
19792, 159, 191, 196syl3c 64 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
198197, 79syl6breqr 4625 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
199 itg2ub 23306 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1 ∧ (𝑔𝑛) ∘𝑟𝐹) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
2001993expia 1259 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
20180, 200sylan2 490 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ)) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
202201anassrs 678 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
203202adantrd 483 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
204203ralimdva 2945 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
205204impr 647 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
20676, 83, 175fvmpt 6191 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) = (∫1‘(𝑔𝑚)))
207206breq1d 4593 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
208207ralbiia 2962 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
20976breq1d 4593 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
210209cbvralv 3147 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
211208, 210bitr4i 266 . . . . . . . . 9 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
212205, 211sylibr 223 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹))
213 ffn 5958 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ)
214 breq1 4586 . . . . . . . . . 10 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) → (𝑧 ≤ (∫2𝐹) ↔ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
215214ralrn 6270 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
21685, 213, 2153syl 18 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
217212, 216mpbird 246 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹))
21811adantr 480 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ∈ ℝ*)
219 supxrleub 12028 . . . . . . . 8 ((ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
22089, 218, 219syl2anc 691 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
221217, 220mpbird 246 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))
22211adantr 480 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∫2𝐹) ∈ ℝ*)
223167, 90syl 17 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
224 xrletri3 11861 . . . . . . . 8 (((∫2𝐹) ∈ ℝ* ∧ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*) → ((∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ↔ ((∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∧ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))))
225222, 223, 224syl2anc 691 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ((∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ↔ ((∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∧ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))))
226225adantrr 749 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ((∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ↔ ((∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∧ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))))
227198, 221, 226mpbir2and 959 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
22871, 74, 2273jca 1235 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
229228ex 449 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
230229eximdv 1833 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
23170, 230mpd 15 1 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874  ifcif 4036   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑟 cofr 6794  𝑚 cmap 7744  supcsup 8229  cr 9814  0cc0 9815  1c1 9816  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  +crp 11708  [,]cicc 12049  1citg1 23190  2citg2 23191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator