Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2leub | Structured version Visualization version GIF version |
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2‘𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2leub | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | itg2val 23301 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
4 | 3 | breq1d 4593 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴)) |
5 | 1 | itg2lcl 23300 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* |
6 | supxrleub 12028 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) | |
7 | 5, 6 | mpan 702 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
9 | eqeq1 2614 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = (∫1‘𝑔) ↔ 𝑧 = (∫1‘𝑔))) | |
10 | 9 | anbi2d 736 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
11 | 10 | rexbidv 3034 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
12 | 11 | ralab 3334 | . . . 4 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) |
13 | r19.23v 3005 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) | |
14 | ancomst 467 | . . . . . . . . 9 ⊢ (((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘𝑟 ≤ 𝐹) → 𝑧 ≤ 𝐴)) | |
15 | impexp 461 | . . . . . . . . 9 ⊢ (((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘𝑟 ≤ 𝐹) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
16 | 14, 15 | bitri 263 | . . . . . . . 8 ⊢ (((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
17 | 16 | ralbii 2963 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
18 | 13, 17 | bitr3i 265 | . . . . . 6 ⊢ ((∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
19 | 18 | albii 1737 | . . . . 5 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
20 | ralcom4 3197 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
21 | fvex 6113 | . . . . . . . 8 ⊢ (∫1‘𝑔) ∈ V | |
22 | breq1 4586 | . . . . . . . . 9 ⊢ (𝑧 = (∫1‘𝑔) → (𝑧 ≤ 𝐴 ↔ (∫1‘𝑔) ≤ 𝐴)) | |
23 | 22 | imbi2d 329 | . . . . . . . 8 ⊢ (𝑧 = (∫1‘𝑔) → ((𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴) ↔ (𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
24 | 21, 23 | ceqsalv 3206 | . . . . . . 7 ⊢ (∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ (𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
25 | 24 | ralbii 2963 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
26 | 20, 25 | bitr3i 265 | . . . . 5 ⊢ (∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
27 | 19, 26 | bitri 263 | . . . 4 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
28 | 12, 27 | bitri 263 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
29 | 8, 28 | syl6bb 275 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
30 | 4, 29 | bitrd 267 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 = wceq 1475 ∈ wcel 1977 {cab 2596 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 class class class wbr 4583 dom cdm 5038 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ∘𝑟 cofr 6794 supcsup 8229 ℝcr 9814 0cc0 9815 +∞cpnf 9950 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 [,]cicc 12049 ∫1citg1 23190 ∫2citg2 23191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xadd 11823 df-ioo 12050 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-sum 14265 df-xmet 19560 df-met 19561 df-ovol 23040 df-vol 23041 df-mbf 23194 df-itg1 23195 df-itg2 23196 |
This theorem is referenced by: itg2itg1 23309 itg2le 23312 itg2seq 23315 itg2lea 23317 itg2mulclem 23319 itg2splitlem 23321 itg2split 23322 itg2mono 23326 ftc1anclem5 32659 |
Copyright terms: Public domain | W3C validator |