Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2split Structured version   Visualization version   GIF version

Theorem itg2split 23322
 Description: The ∫2 integral splits under an almost disjoint union. (The proof avoids the use of itg2add 23332 which requires CC.) (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2split (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2split
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2split.a . . 3 (𝜑𝐴 ∈ dom vol)
2 itg2split.b . . 3 (𝜑𝐵 ∈ dom vol)
3 itg2split.i . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
4 itg2split.u . . 3 (𝜑𝑈 = (𝐴𝐵))
5 itg2split.c . . 3 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
6 itg2split.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
7 itg2split.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
8 itg2split.h . . 3 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
9 itg2split.sf . . 3 (𝜑 → (∫2𝐹) ∈ ℝ)
10 itg2split.sg . . 3 (𝜑 → (∫2𝐺) ∈ ℝ)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itg2splitlem 23321 . 2 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
1210adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐺) ∈ ℝ)
135adantlr 747 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
14 0e0iccpnf 12154 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
1514a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
1613, 15ifclda 4070 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1716, 8fmptd 6292 . . . . . . . . 9 (𝜑𝐻:ℝ⟶(0[,]+∞))
189, 10readdcld 9948 . . . . . . . . 9 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
19 itg2lecl 23311 . . . . . . . . 9 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ ∧ (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺))) → (∫2𝐻) ∈ ℝ)
2017, 18, 11, 19syl3anc 1318 . . . . . . . 8 (𝜑 → (∫2𝐻) ∈ ℝ)
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐻) ∈ ℝ)
22 itg1cl 23258 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
2322ad2antrl 760 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫1𝑓) ∈ ℝ)
24 simprll 798 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓 ∈ dom ∫1)
25 simprrl 800 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔 ∈ dom ∫1)
2624, 25itg1add 23274 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1‘(𝑓𝑓 + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
2717adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝐻:ℝ⟶(0[,]+∞))
2824, 25i1fadd 23268 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑓𝑓 + 𝑔) ∈ dom ∫1)
29 inss1 3795 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ⊆ 𝐴
30 mblss 23106 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
311, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ)
3229, 31syl5ss 3579 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ⊆ ℝ)
3332adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝐴𝐵) ⊆ ℝ)
343adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (vol*‘(𝐴𝐵)) = 0)
35 nfv 1830 . . . . . . . . . . . . . . . . . 18 𝑥𝜑
36 nfv 1830 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓 ∈ dom ∫1
37 nfcv 2751 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑓
38 nfcv 2751 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑟
39 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
406, 39nfcxfr 2749 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
4137, 38, 40nfbr 4629 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓𝑟𝐹
4236, 41nfan 1816 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑓 ∈ dom ∫1𝑓𝑟𝐹)
43 nfv 1830 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔 ∈ dom ∫1
44 nfcv 2751 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑔
45 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
467, 45nfcxfr 2749 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
4744, 38, 46nfbr 4629 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔𝑟𝐺
4843, 47nfan 1816 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑔 ∈ dom ∫1𝑔𝑟𝐺)
4942, 48nfan 1816 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))
5035, 49nfan 1816 . . . . . . . . . . . . . . . . 17 𝑥(𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺)))
51 eldifi 3694 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑥 ∈ ℝ)
52 i1ff 23249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
5324, 52syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓:ℝ⟶ℝ)
54 ffn 5958 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℝ⟶ℝ → 𝑓 Fn ℝ)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓 Fn ℝ)
56 i1ff 23249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
5725, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔:ℝ⟶ℝ)
58 ffn 5958 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:ℝ⟶ℝ → 𝑔 Fn ℝ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔 Fn ℝ)
60 reex 9906 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
6160a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ℝ ∈ V)
62 inidm 3784 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ∩ ℝ) = ℝ
63 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
64 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) = (𝑔𝑥))
6555, 59, 61, 61, 62, 63, 64ofval 6804 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
6651, 65sylan2 490 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
67 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
6853, 51, 67syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ∈ ℝ)
69 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
7057, 51, 69syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ∈ ℝ)
7168, 70readdcld 9948 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ)
7271rexrd 9968 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7468adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
7574rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ*)
76 iccssxr 12127 . . . . . . . . . . . . . . . . . . . . . . 23 (0[,]+∞) ⊆ ℝ*
77 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) ∈ (0[,]+∞))
7827, 51, 77syl2an 493 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ (0[,]+∞))
7976, 78sseldi 3566 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ ℝ*)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
8170adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
82 0red 9920 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 0 ∈ ℝ)
83 simprrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔𝑟𝐺)
8460a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → ℝ ∈ V)
85 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔𝑥) ∈ V
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ V)
87 ssun2 3739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐵 ⊆ (𝐴𝐵)
8887, 4syl5sseqr 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐵𝑈)
8988sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑥𝐵) → 𝑥𝑈)
9089adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
9190, 13syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
9214a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
9391, 92ifclda 4070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
9493adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
95 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑔 Fn ℝ) → 𝑔 Fn ℝ)
96 dffn5 6151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔 Fn ℝ ↔ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9795, 96sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
987a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
9984, 86, 94, 97, 98ofrfval2 6813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔 Fn ℝ) → (𝑔𝑟𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10059, 99syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑔𝑟𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10183, 100mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
102101r19.21bi 2916 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
10351, 102sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
105 eldifn 3695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑥 ∈ (𝐴𝐵))
106105adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑥 ∈ (𝐴𝐵))
107 elin 3758 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
108106, 107sylnib 317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑥𝐴𝑥𝐵))
109 imnan 437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
110108, 109sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑥𝐴 → ¬ 𝑥𝐵))
111110imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
112111iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐵, 𝐶, 0) = 0)
113104, 112breqtrd 4609 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ 0)
11481, 82, 74, 113leadd2dd 10521 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ ((𝑓𝑥) + 0))
11574recnd 9947 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
116115addid1d 10115 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + 0) = (𝑓𝑥))
117114, 116breqtrd 4609 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑓𝑥))
118 simprlr 799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓𝑟𝐹)
11960a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → ℝ ∈ V)
120 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓𝑥) ∈ V
121120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
122 ssun1 3738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝐴 ⊆ (𝐴𝐵)
123122, 4syl5sseqr 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐴𝑈)
124123sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑥𝐴) → 𝑥𝑈)
125124adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
126125, 13syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
12714a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
128126, 127ifclda 4070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
129128adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
130 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑓 Fn ℝ) → 𝑓 Fn ℝ)
131 dffn5 6151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn ℝ ↔ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
132130, 131sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
1336a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
134119, 121, 129, 132, 133ofrfval2 6813 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 Fn ℝ) → (𝑓𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
13555, 134syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑓𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
136118, 135mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
137136r19.21bi 2916 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
13851, 137sylan2 490 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
139138adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
140123ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → 𝐴𝑈)
141140sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 𝑥𝑈)
142141iftrued 4044 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
143 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
14416adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1458fvmpt2 6200 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞)) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
146143, 144, 145syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
14751, 146sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
149 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
150149adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
151142, 148, 1503eqtr4d 2654 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐴, 𝐶, 0))
152139, 151breqtrrd 4611 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ (𝐻𝑥))
15373, 75, 80, 117, 152xrletrd 11869 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
15472adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
15570adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
156155rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ*)
15779adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
15868adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
159 0red 9920 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
160138adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
161 iffalse 4045 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 0)
163160, 162breqtrd 4609 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ 0)
164158, 159, 155, 163leadd1dd 10520 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (0 + (𝑔𝑥)))
165155recnd 9947 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
166165addid2d 10116 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (0 + (𝑔𝑥)) = (𝑔𝑥))
167164, 166breqtrd 4609 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑔𝑥))
168103adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
169147adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
1704ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 𝑈 = (𝐴𝐵))
171170eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
172 biorf 419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥𝐴 → (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
173 elun 3715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
174172, 173syl6rbbr 278 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝐴 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
175174adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
176171, 175bitrd 267 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥𝐵))
177176ifbid 4058 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = if(𝑥𝐵, 𝐶, 0))
178169, 177eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐵, 𝐶, 0))
179168, 178breqtrrd 4611 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ (𝐻𝑥))
180154, 156, 157, 167, 179xrletrd 11869 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
181153, 180pm2.61dan 828 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
18266, 181eqbrtrd 4605 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥))
183182ex 449 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥)))
18450, 183ralrimi 2940 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥))
185 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑦((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥)
186 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓𝑓 + 𝑔)‘𝑦)
187 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑥
188 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
1898, 188nfcxfr 2749 . . . . . . . . . . . . . . . . . . 19 𝑥𝐻
190 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑥𝑦
191189, 190nffv 6110 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦)
192186, 187, 191nfbr 4629 . . . . . . . . . . . . . . . . 17 𝑥((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦)
193 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑓 + 𝑔)‘𝑦))
194 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
195193, 194breq12d 4596 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦)))
196185, 192, 195cbvral 3143 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
197184, 196sylib 207 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
198197r19.21bi 2916 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
19927, 28, 33, 34, 198itg2uba 23316 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1‘(𝑓𝑓 + 𝑔)) ≤ (∫2𝐻))
20026, 199eqbrtrrd 4607 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻))
20123adantrr 749 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑓) ∈ ℝ)
202 itg1cl 23258 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
20325, 202syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑔) ∈ ℝ)
20420adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫2𝐻) ∈ ℝ)
205201, 203, 204leaddsub2d 10508 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻) ↔ (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
206200, 205mpbid 221 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
207206anassrs 678 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺)) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
208207expr 641 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) ∧ 𝑔 ∈ dom ∫1) → (𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
209208ralrimiva 2949 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
21093, 7fmptd 6292 . . . . . . . . . 10 (𝜑𝐺:ℝ⟶(0[,]+∞))
211210adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
21221, 23resubcld 10337 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ)
213212rexrd 9968 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*)
214 itg2leub 23307 . . . . . . . . 9 ((𝐺:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
215211, 213, 214syl2anc 691 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
216209, 215mpbird 246 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)))
21712, 21, 23, 216lesubd 10510 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))
218217expr 641 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
219218ralrimiva 2949 . . . 4 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
220128, 6fmptd 6292 . . . . 5 (𝜑𝐹:ℝ⟶(0[,]+∞))
22120, 10resubcld 10337 . . . . . 6 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ)
222221rexrd 9968 . . . . 5 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*)
223 itg2leub 23307 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*) → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
224220, 222, 223syl2anc 691 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
225219, 224mpbird 246 . . 3 (𝜑 → (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)))
226 leaddsub 10383 . . . 4 (((∫2𝐹) ∈ ℝ ∧ (∫2𝐺) ∈ ℝ ∧ (∫2𝐻) ∈ ℝ) → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
2279, 10, 20, 226syl3anc 1318 . . 3 (𝜑 → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
228225, 227mpbird 246 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))
229 itg2cl 23305 . . . 4 (𝐻:ℝ⟶(0[,]+∞) → (∫2𝐻) ∈ ℝ*)
23017, 229syl 17 . . 3 (𝜑 → (∫2𝐻) ∈ ℝ*)
23118rexrd 9968 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
232 xrletri3 11861 . . 3 (((∫2𝐻) ∈ ℝ* ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*) → ((∫2𝐻) = ((∫2𝐹) + (∫2𝐺)) ↔ ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ∧ ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))))
233230, 231, 232syl2anc 691 . 2 (𝜑 → ((∫2𝐻) = ((∫2𝐹) + (∫2𝐺)) ↔ ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ∧ ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))))
23411, 228, 233mpbir2and 959 1 (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793   ∘𝑟 cofr 6794  ℝcr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  ℝ*cxr 9952   ≤ cle 9954   − cmin 10145  [,]cicc 12049  vol*covol 23038  volcvol 23039  ∫1citg1 23190  ∫2citg2 23191 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196 This theorem is referenced by:  itg2cnlem2  23335  itgsplit  23408  iblsplit  38858
 Copyright terms: Public domain W3C validator