MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2split Structured version   Visualization version   GIF version

Theorem itg2split 23322
Description: The 2 integral splits under an almost disjoint union. (The proof avoids the use of itg2add 23332 which requires CC.) (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2split (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2split
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2split.a . . 3 (𝜑𝐴 ∈ dom vol)
2 itg2split.b . . 3 (𝜑𝐵 ∈ dom vol)
3 itg2split.i . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
4 itg2split.u . . 3 (𝜑𝑈 = (𝐴𝐵))
5 itg2split.c . . 3 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
6 itg2split.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
7 itg2split.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
8 itg2split.h . . 3 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
9 itg2split.sf . . 3 (𝜑 → (∫2𝐹) ∈ ℝ)
10 itg2split.sg . . 3 (𝜑 → (∫2𝐺) ∈ ℝ)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itg2splitlem 23321 . 2 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
1210adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐺) ∈ ℝ)
135adantlr 747 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
14 0e0iccpnf 12154 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
1514a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
1613, 15ifclda 4070 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1716, 8fmptd 6292 . . . . . . . . 9 (𝜑𝐻:ℝ⟶(0[,]+∞))
189, 10readdcld 9948 . . . . . . . . 9 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
19 itg2lecl 23311 . . . . . . . . 9 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ ∧ (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺))) → (∫2𝐻) ∈ ℝ)
2017, 18, 11, 19syl3anc 1318 . . . . . . . 8 (𝜑 → (∫2𝐻) ∈ ℝ)
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐻) ∈ ℝ)
22 itg1cl 23258 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
2322ad2antrl 760 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫1𝑓) ∈ ℝ)
24 simprll 798 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓 ∈ dom ∫1)
25 simprrl 800 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔 ∈ dom ∫1)
2624, 25itg1add 23274 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1‘(𝑓𝑓 + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
2717adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝐻:ℝ⟶(0[,]+∞))
2824, 25i1fadd 23268 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑓𝑓 + 𝑔) ∈ dom ∫1)
29 inss1 3795 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ⊆ 𝐴
30 mblss 23106 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
311, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ)
3229, 31syl5ss 3579 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ⊆ ℝ)
3332adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝐴𝐵) ⊆ ℝ)
343adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (vol*‘(𝐴𝐵)) = 0)
35 nfv 1830 . . . . . . . . . . . . . . . . . 18 𝑥𝜑
36 nfv 1830 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓 ∈ dom ∫1
37 nfcv 2751 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑓
38 nfcv 2751 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑟
39 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
406, 39nfcxfr 2749 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
4137, 38, 40nfbr 4629 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓𝑟𝐹
4236, 41nfan 1816 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑓 ∈ dom ∫1𝑓𝑟𝐹)
43 nfv 1830 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔 ∈ dom ∫1
44 nfcv 2751 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑔
45 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
467, 45nfcxfr 2749 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
4744, 38, 46nfbr 4629 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔𝑟𝐺
4843, 47nfan 1816 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑔 ∈ dom ∫1𝑔𝑟𝐺)
4942, 48nfan 1816 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))
5035, 49nfan 1816 . . . . . . . . . . . . . . . . 17 𝑥(𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺)))
51 eldifi 3694 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑥 ∈ ℝ)
52 i1ff 23249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
5324, 52syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓:ℝ⟶ℝ)
54 ffn 5958 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℝ⟶ℝ → 𝑓 Fn ℝ)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓 Fn ℝ)
56 i1ff 23249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
5725, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔:ℝ⟶ℝ)
58 ffn 5958 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:ℝ⟶ℝ → 𝑔 Fn ℝ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔 Fn ℝ)
60 reex 9906 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
6160a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ℝ ∈ V)
62 inidm 3784 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ∩ ℝ) = ℝ
63 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
64 eqidd 2611 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) = (𝑔𝑥))
6555, 59, 61, 61, 62, 63, 64ofval 6804 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
6651, 65sylan2 490 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
67 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
6853, 51, 67syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ∈ ℝ)
69 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
7057, 51, 69syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ∈ ℝ)
7168, 70readdcld 9948 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ)
7271rexrd 9968 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7468adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
7574rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ*)
76 iccssxr 12127 . . . . . . . . . . . . . . . . . . . . . . 23 (0[,]+∞) ⊆ ℝ*
77 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) ∈ (0[,]+∞))
7827, 51, 77syl2an 493 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ (0[,]+∞))
7976, 78sseldi 3566 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ ℝ*)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
8170adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
82 0red 9920 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 0 ∈ ℝ)
83 simprrr 801 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔𝑟𝐺)
8460a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → ℝ ∈ V)
85 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔𝑥) ∈ V
8685a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ V)
87 ssun2 3739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐵 ⊆ (𝐴𝐵)
8887, 4syl5sseqr 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐵𝑈)
8988sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑥𝐵) → 𝑥𝑈)
9089adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
9190, 13syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
9214a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
9391, 92ifclda 4070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
9493adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
95 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑔 Fn ℝ) → 𝑔 Fn ℝ)
96 dffn5 6151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔 Fn ℝ ↔ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9795, 96sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
987a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
9984, 86, 94, 97, 98ofrfval2 6813 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔 Fn ℝ) → (𝑔𝑟𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10059, 99syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑔𝑟𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10183, 100mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
102101r19.21bi 2916 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
10351, 102sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
104103adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
105 eldifn 3695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑥 ∈ (𝐴𝐵))
106105adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑥 ∈ (𝐴𝐵))
107 elin 3758 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
108106, 107sylnib 317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑥𝐴𝑥𝐵))
109 imnan 437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
110108, 109sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑥𝐴 → ¬ 𝑥𝐵))
111110imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
112111iffalsed 4047 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐵, 𝐶, 0) = 0)
113104, 112breqtrd 4609 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ 0)
11481, 82, 74, 113leadd2dd 10521 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ ((𝑓𝑥) + 0))
11574recnd 9947 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
116115addid1d 10115 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + 0) = (𝑓𝑥))
117114, 116breqtrd 4609 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑓𝑥))
118 simprlr 799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓𝑟𝐹)
11960a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → ℝ ∈ V)
120 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓𝑥) ∈ V
121120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
122 ssun1 3738 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝐴 ⊆ (𝐴𝐵)
123122, 4syl5sseqr 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐴𝑈)
124123sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑥𝐴) → 𝑥𝑈)
125124adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
126125, 13syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
12714a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
128126, 127ifclda 4070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
129128adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
130 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑓 Fn ℝ) → 𝑓 Fn ℝ)
131 dffn5 6151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn ℝ ↔ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
132130, 131sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
1336a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
134119, 121, 129, 132, 133ofrfval2 6813 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 Fn ℝ) → (𝑓𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
13555, 134syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑓𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
136118, 135mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
137136r19.21bi 2916 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
13851, 137sylan2 490 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
139138adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
140123ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → 𝐴𝑈)
141140sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 𝑥𝑈)
142141iftrued 4044 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
143 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
14416adantlr 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1458fvmpt2 6200 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞)) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
146143, 144, 145syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
14751, 146sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
149 iftrue 4042 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
150149adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
151142, 148, 1503eqtr4d 2654 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐴, 𝐶, 0))
152139, 151breqtrrd 4611 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ (𝐻𝑥))
15373, 75, 80, 117, 152xrletrd 11869 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
15472adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
15570adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
156155rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ*)
15779adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
15868adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
159 0red 9920 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
160138adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
161 iffalse 4045 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 0)
163160, 162breqtrd 4609 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ 0)
164158, 159, 155, 163leadd1dd 10520 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (0 + (𝑔𝑥)))
165155recnd 9947 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
166165addid2d 10116 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (0 + (𝑔𝑥)) = (𝑔𝑥))
167164, 166breqtrd 4609 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑔𝑥))
168103adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
169147adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
1704ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 𝑈 = (𝐴𝐵))
171170eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
172 biorf 419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥𝐴 → (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
173 elun 3715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
174172, 173syl6rbbr 278 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝐴 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
175174adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
176171, 175bitrd 267 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥𝐵))
177176ifbid 4058 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = if(𝑥𝐵, 𝐶, 0))
178169, 177eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐵, 𝐶, 0))
179168, 178breqtrrd 4611 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ (𝐻𝑥))
180154, 156, 157, 167, 179xrletrd 11869 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
181153, 180pm2.61dan 828 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
18266, 181eqbrtrd 4605 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥))
183182ex 449 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥)))
18450, 183ralrimi 2940 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥))
185 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑦((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥)
186 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓𝑓 + 𝑔)‘𝑦)
187 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑥
188 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
1898, 188nfcxfr 2749 . . . . . . . . . . . . . . . . . . 19 𝑥𝐻
190 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑥𝑦
191189, 190nffv 6110 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦)
192186, 187, 191nfbr 4629 . . . . . . . . . . . . . . . . 17 𝑥((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦)
193 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑓 + 𝑔)‘𝑦))
194 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
195193, 194breq12d 4596 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦)))
196185, 192, 195cbvral 3143 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
197184, 196sylib 207 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
198197r19.21bi 2916 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
19927, 28, 33, 34, 198itg2uba 23316 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1‘(𝑓𝑓 + 𝑔)) ≤ (∫2𝐻))
20026, 199eqbrtrrd 4607 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻))
20123adantrr 749 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑓) ∈ ℝ)
202 itg1cl 23258 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
20325, 202syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑔) ∈ ℝ)
20420adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫2𝐻) ∈ ℝ)
205201, 203, 204leaddsub2d 10508 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻) ↔ (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
206200, 205mpbid 221 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
207206anassrs 678 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺)) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
208207expr 641 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) ∧ 𝑔 ∈ dom ∫1) → (𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
209208ralrimiva 2949 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
21093, 7fmptd 6292 . . . . . . . . . 10 (𝜑𝐺:ℝ⟶(0[,]+∞))
211210adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
21221, 23resubcld 10337 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ)
213212rexrd 9968 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*)
214 itg2leub 23307 . . . . . . . . 9 ((𝐺:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
215211, 213, 214syl2anc 691 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
216209, 215mpbird 246 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)))
21712, 21, 23, 216lesubd 10510 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))
218217expr 641 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
219218ralrimiva 2949 . . . 4 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
220128, 6fmptd 6292 . . . . 5 (𝜑𝐹:ℝ⟶(0[,]+∞))
22120, 10resubcld 10337 . . . . . 6 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ)
222221rexrd 9968 . . . . 5 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*)
223 itg2leub 23307 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*) → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
224220, 222, 223syl2anc 691 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
225219, 224mpbird 246 . . 3 (𝜑 → (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)))
226 leaddsub 10383 . . . 4 (((∫2𝐹) ∈ ℝ ∧ (∫2𝐺) ∈ ℝ ∧ (∫2𝐻) ∈ ℝ) → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
2279, 10, 20, 226syl3anc 1318 . . 3 (𝜑 → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
228225, 227mpbird 246 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))
229 itg2cl 23305 . . . 4 (𝐻:ℝ⟶(0[,]+∞) → (∫2𝐻) ∈ ℝ*)
23017, 229syl 17 . . 3 (𝜑 → (∫2𝐻) ∈ ℝ*)
23118rexrd 9968 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
232 xrletri3 11861 . . 3 (((∫2𝐻) ∈ ℝ* ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*) → ((∫2𝐻) = ((∫2𝐹) + (∫2𝐺)) ↔ ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ∧ ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))))
233230, 231, 232syl2anc 691 . 2 (𝜑 → ((∫2𝐻) = ((∫2𝐹) + (∫2𝐺)) ↔ ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ∧ ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))))
23411, 228, 233mpbir2and 959 1 (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  dom cdm 5038   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑟 cofr 6794  cr 9814  0cc0 9815   + caddc 9818  +∞cpnf 9950  *cxr 9952  cle 9954  cmin 10145  [,]cicc 12049  vol*covol 23038  volcvol 23039  1citg1 23190  2citg2 23191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-rest 15906  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cmp 21000  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196
This theorem is referenced by:  itg2cnlem2  23335  itgsplit  23408  iblsplit  38858
  Copyright terms: Public domain W3C validator