Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itg2itg1 | Structured version Visualization version GIF version |
Description: The integral of a nonnegative simple function using ∫2 is the same as its value under ∫1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2itg1 | ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1le 23286 | . . . . . . 7 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ∧ 𝑔 ∘𝑟 ≤ 𝐹) → (∫1‘𝑔) ≤ (∫1‘𝐹)) | |
2 | 1 | 3expia 1259 | . . . . . 6 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
3 | 2 | ancoms 468 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1) → (𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
4 | 3 | ralrimiva 2949 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
6 | i1ff 23249 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
7 | xrge0f 23304 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) | |
8 | 6, 7 | sylan 487 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
9 | itg1cl 23258 | . . . . . 6 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ) |
11 | 10 | rexrd 9968 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ*) |
12 | itg2leub 23307 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫1‘𝐹) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) | |
13 | 8, 11, 12 | syl2anc 691 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) |
14 | 5, 13 | mpbird 246 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫2‘𝐹) ≤ (∫1‘𝐹)) |
15 | simpl 472 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹 ∈ dom ∫1) | |
16 | reex 9906 | . . . . . 6 ⊢ ℝ ∈ V | |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → ℝ ∈ V) |
18 | leid 10012 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ 𝑥) | |
19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝑥) |
20 | 17, 6, 19 | caofref 6821 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∘𝑟 ≤ 𝐹) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹 ∘𝑟 ≤ 𝐹) |
22 | itg2ub 23306 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐹 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) | |
23 | 8, 15, 21, 22 | syl3anc 1318 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) |
24 | itg2cl 23305 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | |
25 | 8, 24 | syl 17 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫2‘𝐹) ∈ ℝ*) |
26 | xrletri3 11861 | . . 3 ⊢ (((∫2‘𝐹) ∈ ℝ* ∧ (∫1‘𝐹) ∈ ℝ*) → ((∫2‘𝐹) = (∫1‘𝐹) ↔ ((∫2‘𝐹) ≤ (∫1‘𝐹) ∧ (∫1‘𝐹) ≤ (∫2‘𝐹)))) | |
27 | 25, 11, 26 | syl2anc 691 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → ((∫2‘𝐹) = (∫1‘𝐹) ↔ ((∫2‘𝐹) ≤ (∫1‘𝐹) ∧ (∫1‘𝐹) ≤ (∫2‘𝐹)))) |
28 | 14, 23, 27 | mpbir2and 959 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 class class class wbr 4583 dom cdm 5038 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ∘𝑟 cofr 6794 ℝcr 9814 0cc0 9815 +∞cpnf 9950 ℝ*cxr 9952 ≤ cle 9954 [,]cicc 12049 ∫1citg1 23190 ∫2citg2 23191 0𝑝c0p 23242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-disj 4554 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-ofr 6796 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xadd 11823 df-ioo 12050 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-sum 14265 df-xmet 19560 df-met 19561 df-ovol 23040 df-vol 23041 df-mbf 23194 df-itg1 23195 df-itg2 23196 df-0p 23243 |
This theorem is referenced by: itg20 23310 itg2const 23313 itg2i1fseq 23328 i1fibl 23380 itgitg1 23381 ftc1anclem5 32659 ftc1anclem7 32661 ftc1anclem8 32662 |
Copyright terms: Public domain | W3C validator |