MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4 Structured version   Visualization version   GIF version

Theorem axcc4 9144
Description: A version of axcc3 9143 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.)
Hypotheses
Ref Expression
axcc4.1 𝐴 ∈ V
axcc4.2 𝑁 ≈ ω
axcc4.3 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
Assertion
Ref Expression
axcc4 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Distinct variable groups:   𝐴,𝑓,𝑛,𝑥   𝑓,𝑁,𝑛   𝜑,𝑓   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝜓(𝑓,𝑛)   𝑁(𝑥)

Proof of Theorem axcc4
StepHypRef Expression
1 axcc4.1 . . . 4 𝐴 ∈ V
21rabex 4740 . . 3 {𝑥𝐴𝜑} ∈ V
3 axcc4.2 . . 3 𝑁 ≈ ω
42, 3axcc3 9143 . 2 𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
5 rabn0 3912 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
6 pm2.27 41 . . . . . . . . . 10 ({𝑥𝐴𝜑} ≠ ∅ → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
75, 6sylbir 224 . . . . . . . . 9 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → (𝑓𝑛) ∈ {𝑥𝐴𝜑}))
8 axcc4.3 . . . . . . . . . 10 (𝑥 = (𝑓𝑛) → (𝜑𝜓))
98elrab 3331 . . . . . . . . 9 ((𝑓𝑛) ∈ {𝑥𝐴𝜑} ↔ ((𝑓𝑛) ∈ 𝐴𝜓))
107, 9syl6ib 240 . . . . . . . 8 (∃𝑥𝐴 𝜑 → (({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ((𝑓𝑛) ∈ 𝐴𝜓)))
1110ral2imi 2931 . . . . . . 7 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓)))
12 simpl 472 . . . . . . . 8 (((𝑓𝑛) ∈ 𝐴𝜓) → (𝑓𝑛) ∈ 𝐴)
1312ralimi 2936 . . . . . . 7 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)
1411, 13syl6 34 . . . . . 6 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1514anim2d 587 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴)))
16 ffnfv 6295 . . . . 5 (𝑓:𝑁𝐴 ↔ (𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 (𝑓𝑛) ∈ 𝐴))
1715, 16syl6ibr 241 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → 𝑓:𝑁𝐴))
18 simpr 476 . . . . . . 7 (((𝑓𝑛) ∈ 𝐴𝜓) → 𝜓)
1918ralimi 2936 . . . . . 6 (∀𝑛𝑁 ((𝑓𝑛) ∈ 𝐴𝜓) → ∀𝑛𝑁 𝜓)
2011, 19syl6 34 . . . . 5 (∀𝑛𝑁𝑥𝐴 𝜑 → (∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑}) → ∀𝑛𝑁 𝜓))
2120adantld 482 . . . 4 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∀𝑛𝑁 𝜓))
2217, 21jcad 554 . . 3 (∀𝑛𝑁𝑥𝐴 𝜑 → ((𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → (𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
2322eximdv 1833 . 2 (∀𝑛𝑁𝑥𝐴 𝜑 → (∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛𝑁 ({𝑥𝐴𝜑} ≠ ∅ → (𝑓𝑛) ∈ {𝑥𝐴𝜑})) → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓)))
244, 23mpi 20 1 (∀𝑛𝑁𝑥𝐴 𝜑 → ∃𝑓(𝑓:𝑁𝐴 ∧ ∀𝑛𝑁 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  c0 3874   class class class wbr 4583   Fn wfn 5799  wf 5800  cfv 5804  ωcom 6957  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-2nd 7060  df-er 7629  df-en 7842
This theorem is referenced by:  axcc4dom  9146  supcvg  14427  1stcelcls  21074  iscmet3  22899  ovoliunlem3  23079  itg2seq  23315  nmounbseqi  27016  nmobndseqi  27018  minvecolem5  27121  heibor  32790
  Copyright terms: Public domain W3C validator