MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcc4 Structured version   Unicode version

Theorem axcc4 8815
Description: A version of axcc3 8814 that uses wffs instead of classes. (Contributed by Mario Carneiro, 7-Apr-2013.)
Hypotheses
Ref Expression
axcc4.1  |-  A  e. 
_V
axcc4.2  |-  N  ~~  om
axcc4.3  |-  ( x  =  ( f `  n )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
axcc4  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
Distinct variable groups:    A, f, n, x    f, N, n    ph, f    ps, x
Allowed substitution hints:    ph( x, n)    ps( f, n)    N( x)

Proof of Theorem axcc4
StepHypRef Expression
1 axcc4.1 . . . 4  |-  A  e. 
_V
21rabex 4598 . . 3  |-  { x  e.  A  |  ph }  e.  _V
3 axcc4.2 . . 3  |-  N  ~~  om
42, 3axcc3 8814 . 2  |-  E. f
( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )
5 rabn0 3805 . . . . . . . . . 10  |-  ( { x  e.  A  |  ph }  =/=  (/)  <->  E. x  e.  A  ph )
6 pm2.27 39 . . . . . . . . . 10  |-  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
( { x  e.  A  |  ph }  =/=  (/)  ->  ( f `  n )  e.  {
x  e.  A  |  ph } )  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )
75, 6sylbir 213 . . . . . . . . 9  |-  ( E. x  e.  A  ph  ->  ( ( { x  e.  A  |  ph }  =/=  (/)  ->  ( f `  n )  e.  {
x  e.  A  |  ph } )  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )
8 axcc4.3 . . . . . . . . . 10  |-  ( x  =  ( f `  n )  ->  ( ph 
<->  ps ) )
98elrab 3261 . . . . . . . . 9  |-  ( ( f `  n )  e.  { x  e.  A  |  ph }  <->  ( ( f `  n
)  e.  A  /\  ps ) )
107, 9syl6ib 226 . . . . . . . 8  |-  ( E. x  e.  A  ph  ->  ( ( { x  e.  A  |  ph }  =/=  (/)  ->  ( f `  n )  e.  {
x  e.  A  |  ph } )  ->  (
( f `  n
)  e.  A  /\  ps ) ) )
1110ral2imi 2852 . . . . . . 7  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } )  ->  A. n  e.  N  ( ( f `  n )  e.  A  /\  ps ) ) )
12 simpl 457 . . . . . . . 8  |-  ( ( ( f `  n
)  e.  A  /\  ps )  ->  ( f `
 n )  e.  A )
1312ralimi 2857 . . . . . . 7  |-  ( A. n  e.  N  (
( f `  n
)  e.  A  /\  ps )  ->  A. n  e.  N  ( f `  n )  e.  A
)
1411, 13syl6 33 . . . . . 6  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } )  ->  A. n  e.  N  ( f `  n
)  e.  A ) )
1514anim2d 565 . . . . 5  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  A
) ) )
16 ffnfv 6045 . . . . 5  |-  ( f : N --> A  <->  ( f  Fn  N  /\  A. n  e.  N  ( f `  n )  e.  A
) )
1715, 16syl6ibr 227 . . . 4  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  f : N --> A ) )
18 simpr 461 . . . . . . 7  |-  ( ( ( f `  n
)  e.  A  /\  ps )  ->  ps )
1918ralimi 2857 . . . . . 6  |-  ( A. n  e.  N  (
( f `  n
)  e.  A  /\  ps )  ->  A. n  e.  N  ps )
2011, 19syl6 33 . . . . 5  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } )  ->  A. n  e.  N  ps ) )
2120adantld 467 . . . 4  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  A. n  e.  N  ps ) )
2217, 21jcad 533 . . 3  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  ( f : N --> A  /\  A. n  e.  N  ps ) ) )
2322eximdv 1686 . 2  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  ( E. f ( f  Fn  N  /\  A. n  e.  N  ( { x  e.  A  |  ph }  =/=  (/)  ->  (
f `  n )  e.  { x  e.  A  |  ph } ) )  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) ) )
244, 23mpi 17 1  |-  ( A. n  e.  N  E. x  e.  A  ph  ->  E. f ( f : N --> A  /\  A. n  e.  N  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113   (/)c0 3785   class class class wbr 4447    Fn wfn 5581   -->wf 5582   ` cfv 5586   omcom 6678    ~~ cen 7510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cc 8811
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-om 6679  df-2nd 6782  df-er 7308  df-en 7514
This theorem is referenced by:  axcc4dom  8817  supcvg  13626  1stcelcls  19728  iscmet3  21467  ovoliunlem3  21650  itg2seq  21884  nmounbseqi  25368  nmobndseqi  25370  minvecolem5  25473  heibor  29920
  Copyright terms: Public domain W3C validator