Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly2 Structured version   Visualization version   GIF version

Theorem bpoly2 14627
 Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))

Proof of Theorem bpoly2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 11186 . . 3 2 ∈ ℕ0
2 bpolyval 14619 . . 3 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
31, 2mpan 702 . 2 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))))
4 2m1e1 11012 . . . . . . 7 (2 − 1) = 1
5 0p1e1 11009 . . . . . . 7 (0 + 1) = 1
64, 5eqtr4i 2635 . . . . . 6 (2 − 1) = (0 + 1)
76oveq2i 6560 . . . . 5 (0...(2 − 1)) = (0...(0 + 1))
87sumeq1i 14276 . . . 4 Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))
9 0nn0 11184 . . . . . . . . 9 0 ∈ ℕ0
10 nn0uz 11598 . . . . . . . . 9 0 = (ℤ‘0)
119, 10eleqtri 2686 . . . . . . . 8 0 ∈ (ℤ‘0)
1211a1i 11 . . . . . . 7 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
13 0z 11265 . . . . . . . . . . 11 0 ∈ ℤ
14 fzpr 12266 . . . . . . . . . . 11 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1513, 14ax-mp 5 . . . . . . . . . 10 (0...(0 + 1)) = {0, (0 + 1)}
1615eleq2i 2680 . . . . . . . . 9 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, (0 + 1)})
17 vex 3176 . . . . . . . . . 10 𝑘 ∈ V
1817elpr 4146 . . . . . . . . 9 (𝑘 ∈ {0, (0 + 1)} ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
1916, 18bitri 263 . . . . . . . 8 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = (0 + 1)))
20 oveq2 6557 . . . . . . . . . . . . 13 (𝑘 = 0 → (2C𝑘) = (2C0))
21 bcn0 12959 . . . . . . . . . . . . . 14 (2 ∈ ℕ0 → (2C0) = 1)
221, 21ax-mp 5 . . . . . . . . . . . . 13 (2C0) = 1
2320, 22syl6eq 2660 . . . . . . . . . . . 12 (𝑘 = 0 → (2C𝑘) = 1)
24 oveq1 6556 . . . . . . . . . . . . 13 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
25 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (2 − 𝑘) = (2 − 0))
2625oveq1d 6564 . . . . . . . . . . . . . 14 (𝑘 = 0 → ((2 − 𝑘) + 1) = ((2 − 0) + 1))
27 2cn 10968 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
2827subid1i 10232 . . . . . . . . . . . . . . . 16 (2 − 0) = 2
2928oveq1i 6559 . . . . . . . . . . . . . . 15 ((2 − 0) + 1) = (2 + 1)
30 df-3 10957 . . . . . . . . . . . . . . 15 3 = (2 + 1)
3129, 30eqtr4i 2635 . . . . . . . . . . . . . 14 ((2 − 0) + 1) = 3
3226, 31syl6eq 2660 . . . . . . . . . . . . 13 (𝑘 = 0 → ((2 − 𝑘) + 1) = 3)
3324, 32oveq12d 6567 . . . . . . . . . . . 12 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 3))
3423, 33oveq12d 6567 . . . . . . . . . . 11 (𝑘 = 0 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
35 bpoly0 14620 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
3635oveq1d 6564 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 3) = (1 / 3))
3736oveq2d 6565 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 · (1 / 3)))
38 3cn 10972 . . . . . . . . . . . . . 14 3 ∈ ℂ
39 3ne0 10992 . . . . . . . . . . . . . 14 3 ≠ 0
4038, 39reccli 10634 . . . . . . . . . . . . 13 (1 / 3) ∈ ℂ
4140mulid2i 9922 . . . . . . . . . . . 12 (1 · (1 / 3)) = (1 / 3)
4237, 41syl6eq 2660 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) = (1 / 3))
4334, 42sylan9eqr 2666 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
4443, 40syl6eqel 2696 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
455eqeq2i 2622 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
46 oveq2 6557 . . . . . . . . . . . . . 14 (𝑘 = 1 → (2C𝑘) = (2C1))
47 bcn1 12962 . . . . . . . . . . . . . . 15 (2 ∈ ℕ0 → (2C1) = 2)
481, 47ax-mp 5 . . . . . . . . . . . . . 14 (2C1) = 2
4946, 48syl6eq 2660 . . . . . . . . . . . . 13 (𝑘 = 1 → (2C𝑘) = 2)
50 oveq1 6556 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
51 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2 − 𝑘) = (2 − 1))
5251oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2 − 𝑘) + 1) = ((2 − 1) + 1))
53 ax-1cn 9873 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
54 npcan 10169 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 1 ∈ ℂ) → ((2 − 1) + 1) = 2)
5527, 53, 54mp2an 704 . . . . . . . . . . . . . . 15 ((2 − 1) + 1) = 2
5652, 55syl6eq 2660 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((2 − 𝑘) + 1) = 2)
5750, 56oveq12d 6567 . . . . . . . . . . . . 13 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 2))
5849, 57oveq12d 6567 . . . . . . . . . . . 12 (𝑘 = 1 → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
5945, 58sylbi 206 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (2 · ((1 BernPoly 𝑋) / 2)))
60 bpoly1 14621 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6160oveq1d 6564 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 2) = ((𝑋 − (1 / 2)) / 2))
6261oveq2d 6565 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (2 · ((𝑋 − (1 / 2)) / 2)))
63 halfcn 11124 . . . . . . . . . . . . . 14 (1 / 2) ∈ ℂ
64 subcl 10159 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
6563, 64mpan2 703 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
66 2ne0 10990 . . . . . . . . . . . . . 14 2 ≠ 0
67 divcan2 10572 . . . . . . . . . . . . . 14 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6827, 66, 67mp3an23 1408 . . . . . . . . . . . . 13 ((𝑋 − (1 / 2)) ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
6965, 68syl 17 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · ((𝑋 − (1 / 2)) / 2)) = (𝑋 − (1 / 2)))
7062, 69eqtrd 2644 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (2 · ((1 BernPoly 𝑋) / 2)) = (𝑋 − (1 / 2)))
7159, 70sylan9eqr 2666 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7265adantr 480 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → (𝑋 − (1 / 2)) ∈ ℂ)
7371, 72eqeltrd 2688 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = (0 + 1)) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7444, 73jaodan 822 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = (0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7519, 74sylan2b 491 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) ∈ ℂ)
7612, 75, 59fsump1 14329 . . . . . 6 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))))
7742, 40syl6eqel 2696 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ)
7834fsum1 14320 . . . . . . . . 9 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 3)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
7913, 77, 78sylancr 694 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 3)))
8079, 42eqtrd 2644 . . . . . . 7 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (1 / 3))
8180, 70oveq12d 6567 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) + (2 · ((1 BernPoly 𝑋) / 2))) = ((1 / 3) + (𝑋 − (1 / 2))))
8276, 81eqtrd 2644 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = ((1 / 3) + (𝑋 − (1 / 2))))
83 addsub12 10173 . . . . . . 7 (((1 / 3) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8440, 63, 83mp3an13 1407 . . . . . 6 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 3) − (1 / 2))))
8563, 40negsubdi2i 10246 . . . . . . . 8 -((1 / 2) − (1 / 3)) = ((1 / 3) − (1 / 2))
86 halfthird 11561 . . . . . . . . 9 ((1 / 2) − (1 / 3)) = (1 / 6)
8786negeqi 10153 . . . . . . . 8 -((1 / 2) − (1 / 3)) = -(1 / 6)
8885, 87eqtr3i 2634 . . . . . . 7 ((1 / 3) − (1 / 2)) = -(1 / 6)
8988oveq2i 6560 . . . . . 6 (𝑋 + ((1 / 3) − (1 / 2))) = (𝑋 + -(1 / 6))
9084, 89syl6eq 2660 . . . . 5 (𝑋 ∈ ℂ → ((1 / 3) + (𝑋 − (1 / 2))) = (𝑋 + -(1 / 6)))
91 6cn 10979 . . . . . . 7 6 ∈ ℂ
92 6re 10978 . . . . . . . 8 6 ∈ ℝ
93 6pos 10996 . . . . . . . 8 0 < 6
9492, 93gt0ne0ii 10443 . . . . . . 7 6 ≠ 0
9591, 94reccli 10634 . . . . . 6 (1 / 6) ∈ ℂ
96 negsub 10208 . . . . . 6 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9795, 96mpan2 703 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + -(1 / 6)) = (𝑋 − (1 / 6)))
9882, 90, 973eqtrd 2648 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
998, 98syl5eq 2656 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1))) = (𝑋 − (1 / 6)))
10099oveq2d 6565 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − Σ𝑘 ∈ (0...(2 − 1))((2C𝑘) · ((𝑘 BernPoly 𝑋) / ((2 − 𝑘) + 1)))) = ((𝑋↑2) − (𝑋 − (1 / 6))))
101 sqcl 12787 . . 3 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
102 subsub 10190 . . . 4 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
10395, 102mp3an3 1405 . . 3 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
104101, 103mpancom 700 . 2 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
1053, 100, 1043eqtrd 2648 1 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  {cpr 4127  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  3c3 10948  6c6 10951  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ↑cexp 12722  Ccbc 12951  Σcsu 14264   BernPoly cbp 14616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-bpoly 14617 This theorem is referenced by:  bpoly3  14628  bpoly4  14629
 Copyright terms: Public domain W3C validator