Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bpoly2 Structured version   Unicode version

Theorem bpoly2 28364
Description: The Bernoulli polynomials at two. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly2  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )

Proof of Theorem bpoly2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 2nn0 10710 . . 3  |-  2  e.  NN0
2 bpolyval 28356 . . 3  |-  ( ( 2  e.  NN0  /\  X  e.  CC )  ->  ( 2 BernPoly  X )  =  ( ( X ^ 2 )  -  sum_ k  e.  ( 0 ... ( 2  -  1 ) ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) ) ) )
31, 2mpan 670 . 2  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( X ^ 2 )  -  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) ) ) )
4 2m1e1 10550 . . . . . . 7  |-  ( 2  -  1 )  =  1
5 0p1e1 10547 . . . . . . 7  |-  ( 0  +  1 )  =  1
64, 5eqtr4i 2486 . . . . . 6  |-  ( 2  -  1 )  =  ( 0  +  1 )
76oveq2i 6214 . . . . 5  |-  ( 0 ... ( 2  -  1 ) )  =  ( 0 ... (
0  +  1 ) )
87sumeq1i 13296 . . . 4  |-  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )
9 0nn0 10708 . . . . . . . . 9  |-  0  e.  NN0
10 nn0uz 11009 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
119, 10eleqtri 2540 . . . . . . . 8  |-  0  e.  ( ZZ>= `  0 )
1211a1i 11 . . . . . . 7  |-  ( X  e.  CC  ->  0  e.  ( ZZ>= `  0 )
)
13 0z 10771 . . . . . . . . . . 11  |-  0  e.  ZZ
14 fzpr 11631 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) } )
1513, 14ax-mp 5 . . . . . . . . . 10  |-  ( 0 ... ( 0  +  1 ) )  =  { 0 ,  ( 0  +  1 ) }
1615eleq2i 2532 . . . . . . . . 9  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  <->  k  e.  { 0 ,  ( 0  +  1 ) } )
17 vex 3081 . . . . . . . . . 10  |-  k  e. 
_V
1817elpr 4006 . . . . . . . . 9  |-  ( k  e.  { 0 ,  ( 0  +  1 ) }  <->  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )
1916, 18bitri 249 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( 0  +  1 ) )  <->  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )
20 oveq2 6211 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
2  _C  k )  =  ( 2  _C  0 ) )
21 bcn0 12206 . . . . . . . . . . . . . 14  |-  ( 2  e.  NN0  ->  ( 2  _C  0 )  =  1 )
221, 21ax-mp 5 . . . . . . . . . . . . 13  |-  ( 2  _C  0 )  =  1
2320, 22syl6eq 2511 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
2  _C  k )  =  1 )
24 oveq1 6210 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
k BernPoly  X )  =  ( 0 BernPoly  X ) )
25 oveq2 6211 . . . . . . . . . . . . . . 15  |-  ( k  =  0  ->  (
2  -  k )  =  ( 2  -  0 ) )
2625oveq1d 6218 . . . . . . . . . . . . . 14  |-  ( k  =  0  ->  (
( 2  -  k
)  +  1 )  =  ( ( 2  -  0 )  +  1 ) )
27 2cn 10506 . . . . . . . . . . . . . . . . 17  |-  2  e.  CC
2827subid1i 9794 . . . . . . . . . . . . . . . 16  |-  ( 2  -  0 )  =  2
2928oveq1i 6213 . . . . . . . . . . . . . . 15  |-  ( ( 2  -  0 )  +  1 )  =  ( 2  +  1 )
30 df-3 10495 . . . . . . . . . . . . . . 15  |-  3  =  ( 2  +  1 )
3129, 30eqtr4i 2486 . . . . . . . . . . . . . 14  |-  ( ( 2  -  0 )  +  1 )  =  3
3226, 31syl6eq 2511 . . . . . . . . . . . . 13  |-  ( k  =  0  ->  (
( 2  -  k
)  +  1 )  =  3 )
3324, 32oveq12d 6221 . . . . . . . . . . . 12  |-  ( k  =  0  ->  (
( k BernPoly  X )  /  ( ( 2  -  k )  +  1 ) )  =  ( ( 0 BernPoly  X
)  /  3 ) )
3423, 33oveq12d 6221 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
35 bpoly0 28357 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
0 BernPoly  X )  =  1 )
3635oveq1d 6218 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 0 BernPoly  X )  /  3 )  =  ( 1  /  3
) )
3736oveq2d 6219 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  =  ( 1  x.  ( 1  /  3 ) ) )
38 3cn 10510 . . . . . . . . . . . . . 14  |-  3  e.  CC
39 3ne0 10530 . . . . . . . . . . . . . 14  |-  3  =/=  0
4038, 39reccli 10175 . . . . . . . . . . . . 13  |-  ( 1  /  3 )  e.  CC
4140mulid2i 9503 . . . . . . . . . . . 12  |-  ( 1  x.  ( 1  / 
3 ) )  =  ( 1  /  3
)
4237, 41syl6eq 2511 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  =  ( 1  /  3 ) )
4334, 42sylan9eqr 2517 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  0 )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  /  3 ) )
4443, 40syl6eqel 2550 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  0 )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
455eqeq2i 2472 . . . . . . . . . . . 12  |-  ( k  =  ( 0  +  1 )  <->  k  = 
1 )
46 oveq2 6211 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
2  _C  k )  =  ( 2  _C  1 ) )
47 bcn1 12209 . . . . . . . . . . . . . . 15  |-  ( 2  e.  NN0  ->  ( 2  _C  1 )  =  2 )
481, 47ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 2  _C  1 )  =  2
4946, 48syl6eq 2511 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
2  _C  k )  =  2 )
50 oveq1 6210 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
k BernPoly  X )  =  ( 1 BernPoly  X ) )
51 oveq2 6211 . . . . . . . . . . . . . . . 16  |-  ( k  =  1  ->  (
2  -  k )  =  ( 2  -  1 ) )
5251oveq1d 6218 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  (
( 2  -  k
)  +  1 )  =  ( ( 2  -  1 )  +  1 ) )
53 ax-1cn 9454 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
54 npcan 9733 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  CC  /\  1  e.  CC )  ->  ( ( 2  -  1 )  +  1 )  =  2 )
5527, 53, 54mp2an 672 . . . . . . . . . . . . . . 15  |-  ( ( 2  -  1 )  +  1 )  =  2
5652, 55syl6eq 2511 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( 2  -  k
)  +  1 )  =  2 )
5750, 56oveq12d 6221 . . . . . . . . . . . . 13  |-  ( k  =  1  ->  (
( k BernPoly  X )  /  ( ( 2  -  k )  +  1 ) )  =  ( ( 1 BernPoly  X
)  /  2 ) )
5849, 57oveq12d 6221 . . . . . . . . . . . 12  |-  ( k  =  1  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )
5945, 58sylbi 195 . . . . . . . . . . 11  |-  ( k  =  ( 0  +  1 )  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )
60 bpoly1 28358 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
1 BernPoly  X )  =  ( X  -  ( 1  /  2 ) ) )
6160oveq1d 6218 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  (
( 1 BernPoly  X )  /  2 )  =  ( ( X  -  ( 1  /  2
) )  /  2
) )
6261oveq2d 6219 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1 BernPoly  X )  /  2
) )  =  ( 2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) ) )
63 halfcn 10655 . . . . . . . . . . . . . 14  |-  ( 1  /  2 )  e.  CC
64 subcl 9723 . . . . . . . . . . . . . 14  |-  ( ( X  e.  CC  /\  ( 1  /  2
)  e.  CC )  ->  ( X  -  ( 1  /  2
) )  e.  CC )
6563, 64mpan2 671 . . . . . . . . . . . . 13  |-  ( X  e.  CC  ->  ( X  -  ( 1  /  2 ) )  e.  CC )
66 2ne0 10528 . . . . . . . . . . . . . 14  |-  2  =/=  0
67 divcan2 10116 . . . . . . . . . . . . . 14  |-  ( ( ( X  -  (
1  /  2 ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
6827, 66, 67mp3an23 1307 . . . . . . . . . . . . 13  |-  ( ( X  -  ( 1  /  2 ) )  e.  CC  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
6965, 68syl 16 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
2  x.  ( ( X  -  ( 1  /  2 ) )  /  2 ) )  =  ( X  -  ( 1  /  2
) ) )
7062, 69eqtrd 2495 . . . . . . . . . . 11  |-  ( X  e.  CC  ->  (
2  x.  ( ( 1 BernPoly  X )  /  2
) )  =  ( X  -  ( 1  /  2 ) ) )
7159, 70sylan9eqr 2517 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
2 ) ) )
7265adantr 465 . . . . . . . . . 10  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( X  -  ( 1  /  2
) )  e.  CC )
7371, 72eqeltrd 2542 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  k  =  ( 0  +  1 ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
7444, 73jaodan 783 . . . . . . . 8  |-  ( ( X  e.  CC  /\  ( k  =  0  \/  k  =  ( 0  +  1 ) ) )  ->  (
( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  e.  CC )
7519, 74sylan2b 475 . . . . . . 7  |-  ( ( X  e.  CC  /\  k  e.  ( 0 ... ( 0  +  1 ) ) )  ->  ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  e.  CC )
7612, 75, 59fsump1 13344 . . . . . 6  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  +  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) ) )
7742, 40syl6eqel 2550 . . . . . . . . 9  |-  ( X  e.  CC  ->  (
1  x.  ( ( 0 BernPoly  X )  /  3
) )  e.  CC )
7834fsum1 13339 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( 1  x.  (
( 0 BernPoly  X )  /  3 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
7913, 77, 78sylancr 663 . . . . . . . 8  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  x.  ( ( 0 BernPoly  X )  /  3
) ) )
8079, 42eqtrd 2495 . . . . . . 7  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... 0
) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( 1  /  3 ) )
8180, 70oveq12d 6221 . . . . . 6  |-  ( X  e.  CC  ->  ( sum_ k  e.  ( 0 ... 0 ) ( ( 2  _C  k
)  x.  ( ( k BernPoly  X )  /  (
( 2  -  k
)  +  1 ) ) )  +  ( 2  x.  ( ( 1 BernPoly  X )  /  2
) ) )  =  ( ( 1  / 
3 )  +  ( X  -  ( 1  /  2 ) ) ) )
8276, 81eqtrd 2495 . . . . 5  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( ( 1  /  3 )  +  ( X  -  ( 1  /  2
) ) ) )
83 addsub12 9737 . . . . . . 7  |-  ( ( ( 1  /  3
)  e.  CC  /\  X  e.  CC  /\  (
1  /  2 )  e.  CC )  -> 
( ( 1  / 
3 )  +  ( X  -  ( 1  /  2 ) ) )  =  ( X  +  ( ( 1  /  3 )  -  ( 1  /  2
) ) ) )
8440, 63, 83mp3an13 1306 . . . . . 6  |-  ( X  e.  CC  ->  (
( 1  /  3
)  +  ( X  -  ( 1  / 
2 ) ) )  =  ( X  +  ( ( 1  / 
3 )  -  (
1  /  2 ) ) ) )
8563, 40negsubdi2i 9808 . . . . . . . 8  |-  -u (
( 1  /  2
)  -  ( 1  /  3 ) )  =  ( ( 1  /  3 )  -  ( 1  /  2
) )
86 halfthird 27556 . . . . . . . . 9  |-  ( ( 1  /  2 )  -  ( 1  / 
3 ) )  =  ( 1  /  6
)
8786negeqi 9717 . . . . . . . 8  |-  -u (
( 1  /  2
)  -  ( 1  /  3 ) )  =  -u ( 1  / 
6 )
8885, 87eqtr3i 2485 . . . . . . 7  |-  ( ( 1  /  3 )  -  ( 1  / 
2 ) )  = 
-u ( 1  / 
6 )
8988oveq2i 6214 . . . . . 6  |-  ( X  +  ( ( 1  /  3 )  -  ( 1  /  2
) ) )  =  ( X  +  -u ( 1  /  6
) )
9084, 89syl6eq 2511 . . . . 5  |-  ( X  e.  CC  ->  (
( 1  /  3
)  +  ( X  -  ( 1  / 
2 ) ) )  =  ( X  +  -u ( 1  /  6
) ) )
91 6cn 10517 . . . . . . 7  |-  6  e.  CC
92 6re 10516 . . . . . . . 8  |-  6  e.  RR
93 6pos 10534 . . . . . . . 8  |-  0  <  6
9492, 93gt0ne0ii 9990 . . . . . . 7  |-  6  =/=  0
9591, 94reccli 10175 . . . . . 6  |-  ( 1  /  6 )  e.  CC
96 negsub 9771 . . . . . 6  |-  ( ( X  e.  CC  /\  ( 1  /  6
)  e.  CC )  ->  ( X  +  -u ( 1  /  6
) )  =  ( X  -  ( 1  /  6 ) ) )
9795, 96mpan2 671 . . . . 5  |-  ( X  e.  CC  ->  ( X  +  -u ( 1  /  6 ) )  =  ( X  -  ( 1  /  6
) ) )
9882, 90, 973eqtrd 2499 . . . 4  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
0  +  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
6 ) ) )
998, 98syl5eq 2507 . . 3  |-  ( X  e.  CC  ->  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) )  =  ( X  -  ( 1  / 
6 ) ) )
10099oveq2d 6219 . 2  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  sum_ k  e.  ( 0 ... (
2  -  1 ) ) ( ( 2  _C  k )  x.  ( ( k BernPoly  X
)  /  ( ( 2  -  k )  +  1 ) ) ) )  =  ( ( X ^ 2 )  -  ( X  -  ( 1  / 
6 ) ) ) )
101 sqcl 12048 . . 3  |-  ( X  e.  CC  ->  ( X ^ 2 )  e.  CC )
102 subsub 9753 . . . 4  |-  ( ( ( X ^ 2 )  e.  CC  /\  X  e.  CC  /\  (
1  /  6 )  e.  CC )  -> 
( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )
10395, 102mp3an3 1304 . . 3  |-  ( ( ( X ^ 2 )  e.  CC  /\  X  e.  CC )  ->  ( ( X ^
2 )  -  ( X  -  ( 1  /  6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  / 
6 ) ) )
104101, 103mpancom 669 . 2  |-  ( X  e.  CC  ->  (
( X ^ 2 )  -  ( X  -  ( 1  / 
6 ) ) )  =  ( ( ( X ^ 2 )  -  X )  +  ( 1  /  6
) ) )
1053, 100, 1043eqtrd 2499 1  |-  ( X  e.  CC  ->  (
2 BernPoly  X )  =  ( ( ( X ^
2 )  -  X
)  +  ( 1  /  6 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   {cpr 3990   ` cfv 5529  (class class class)co 6203   CCcc 9394   0cc0 9396   1c1 9397    + caddc 9399    x. cmul 9401    - cmin 9709   -ucneg 9710    / cdiv 10107   2c2 10485   3c3 10486   6c6 10489   NN0cn0 10693   ZZcz 10760   ZZ>=cuz 10975   ...cfz 11557   ^cexp 11985    _C cbc 12198   sum_csu 13284   BernPoly cbp 28353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7805  df-oi 7838  df-card 8223  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-4 10496  df-5 10497  df-6 10498  df-n0 10694  df-z 10761  df-uz 10976  df-rp 11106  df-fz 11558  df-fzo 11669  df-seq 11927  df-exp 11986  df-fac 12172  df-bc 12199  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-clim 13087  df-sum 13285  df-pred 27789  df-wrecs 27881  df-bpoly 28354
This theorem is referenced by:  bpoly3  28365  bpoly4  28366
  Copyright terms: Public domain W3C validator