MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumkthpow Structured version   Visualization version   GIF version

Theorem fsumkthpow 14626
Description: A closed-form expression for the sum of 𝐾-th powers. (Contributed by Scott Fenton, 16-May-2014.) This is Metamath 100 proof #77. (Revised by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
fsumkthpow ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Distinct variable groups:   𝑛,𝐾   𝑛,𝑀

Proof of Theorem fsumkthpow
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 11209 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
21adantr 480 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℕ)
32nncnd 10913 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ∈ ℂ)
4 fzfid 12634 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0...𝑀) ∈ Fin)
5 elfzelz 12213 . . . . 5 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℤ)
65zcnd 11359 . . . 4 (𝑛 ∈ (0...𝑀) → 𝑛 ∈ ℂ)
7 simpl 472 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℕ0)
8 expcl 12740 . . . 4 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → (𝑛𝐾) ∈ ℂ)
96, 7, 8syl2anr 494 . . 3 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛𝐾) ∈ ℂ)
104, 9fsumcl 14311 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) ∈ ℂ)
112nnne0d 10942 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 + 1) ≠ 0)
124, 3, 9fsummulc2 14358 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
13 bpolydif 14625 . . . . . 6 (((𝐾 + 1) ∈ ℕ ∧ 𝑛 ∈ ℂ) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
142, 6, 13syl2an 493 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))))
15 nn0cn 11179 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1615ad2antrr 758 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → 𝐾 ∈ ℂ)
17 ax-1cn 9873 . . . . . . . 8 1 ∈ ℂ
18 pncan 10166 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1916, 17, 18sylancl 693 . . . . . . 7 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) − 1) = 𝐾)
2019oveq2d 6565 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (𝑛↑((𝐾 + 1) − 1)) = (𝑛𝐾))
2120oveq2d 6565 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → ((𝐾 + 1) · (𝑛↑((𝐾 + 1) − 1))) = ((𝐾 + 1) · (𝑛𝐾)))
2214, 21eqtrd 2644 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝑀)) → (((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = ((𝐾 + 1) · (𝑛𝐾)))
2322sumeq2dv 14281 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = Σ𝑛 ∈ (0...𝑀)((𝐾 + 1) · (𝑛𝐾)))
24 oveq2 6557 . . . 4 (𝑘 = 𝑛 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 𝑛))
25 oveq2 6557 . . . 4 (𝑘 = (𝑛 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑛 + 1)))
26 oveq2 6557 . . . 4 (𝑘 = 0 → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly 0))
27 oveq2 6557 . . . 4 (𝑘 = (𝑀 + 1) → ((𝐾 + 1) BernPoly 𝑘) = ((𝐾 + 1) BernPoly (𝑀 + 1)))
28 nn0z 11277 . . . . 5 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
2928adantl 481 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
30 peano2nn0 11210 . . . . . 6 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
3130adantl 481 . . . . 5 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ0)
32 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
3331, 32syl6eleq 2698 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ (ℤ‘0))
34 peano2nn0 11210 . . . . . 6 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3534ad2antrr 758 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → (𝐾 + 1) ∈ ℕ0)
36 elfznn0 12302 . . . . . . 7 (𝑘 ∈ (0...(𝑀 + 1)) → 𝑘 ∈ ℕ0)
3736adantl 481 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℕ0)
3837nn0cnd 11230 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → 𝑘 ∈ ℂ)
39 bpolycl 14622 . . . . 5 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ ℂ) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4035, 38, 39syl2anc 691 . . . 4 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (0...(𝑀 + 1))) → ((𝐾 + 1) BernPoly 𝑘) ∈ ℂ)
4124, 25, 26, 27, 29, 33, 40telfsum2 14378 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(((𝐾 + 1) BernPoly (𝑛 + 1)) − ((𝐾 + 1) BernPoly 𝑛)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
4212, 23, 413eqtr2d 2650 . 2 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾 + 1) · Σ𝑛 ∈ (0...𝑀)(𝑛𝐾)) = (((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)))
433, 10, 11, 42mvllmuld 10736 1 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → Σ𝑛 ∈ (0...𝑀)(𝑛𝐾) = ((((𝐾 + 1) BernPoly (𝑀 + 1)) − ((𝐾 + 1) BernPoly 0)) / (𝐾 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  Σcsu 14264   BernPoly cbp 14616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-bpoly 14617
This theorem is referenced by:  fsumcube  14630
  Copyright terms: Public domain W3C validator