Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly1 Structured version   Visualization version   GIF version

Theorem bpoly1 14621
 Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpoly1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))

Proof of Theorem bpoly1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11185 . . 3 1 ∈ ℕ0
2 bpolyval 14619 . . 3 ((1 ∈ ℕ0𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
31, 2mpan 702 . 2 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
4 exp1 12728 . . 3 (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋)
5 1m1e0 10966 . . . . . 6 (1 − 1) = 0
65oveq2i 6560 . . . . 5 (0...(1 − 1)) = (0...0)
76sumeq1i 14276 . . . 4 Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))
8 0z 11265 . . . . . 6 0 ∈ ℤ
9 bpoly0 14620 . . . . . . . . . 10 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
109oveq1d 6564 . . . . . . . . 9 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2))
1110oveq2d 6565 . . . . . . . 8 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2)))
12 halfcn 11124 . . . . . . . . 9 (1 / 2) ∈ ℂ
1312mulid2i 9922 . . . . . . . 8 (1 · (1 / 2)) = (1 / 2)
1411, 13syl6eq 2660 . . . . . . 7 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2))
1514, 12syl6eqel 2696 . . . . . 6 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ)
16 oveq2 6557 . . . . . . . . 9 (𝑘 = 0 → (1C𝑘) = (1C0))
17 bcn0 12959 . . . . . . . . . 10 (1 ∈ ℕ0 → (1C0) = 1)
181, 17ax-mp 5 . . . . . . . . 9 (1C0) = 1
1916, 18syl6eq 2660 . . . . . . . 8 (𝑘 = 0 → (1C𝑘) = 1)
20 oveq1 6556 . . . . . . . . 9 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
21 oveq2 6557 . . . . . . . . . . . 12 (𝑘 = 0 → (1 − 𝑘) = (1 − 0))
22 1m0e1 11008 . . . . . . . . . . . 12 (1 − 0) = 1
2321, 22syl6eq 2660 . . . . . . . . . . 11 (𝑘 = 0 → (1 − 𝑘) = 1)
2423oveq1d 6564 . . . . . . . . . 10 (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1))
25 df-2 10956 . . . . . . . . . 10 2 = (1 + 1)
2624, 25syl6eqr 2662 . . . . . . . . 9 (𝑘 = 0 → ((1 − 𝑘) + 1) = 2)
2720, 26oveq12d 6567 . . . . . . . 8 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2))
2819, 27oveq12d 6567 . . . . . . 7 (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
2928fsum1 14320 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
308, 15, 29sylancr 694 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
3130, 14eqtrd 2644 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
327, 31syl5eq 2656 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
334, 32oveq12d 6567 . 2 (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2)))
343, 33eqtrd 2644 1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   − cmin 10145   / cdiv 10563  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ...cfz 12197  ↑cexp 12722  Ccbc 12951  Σcsu 14264   BernPoly cbp 14616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-bpoly 14617 This theorem is referenced by:  bpoly2  14627  bpoly3  14628  bpoly4  14629
 Copyright terms: Public domain W3C validator