MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  root1eq1 Structured version   Visualization version   GIF version

Theorem root1eq1 24296
Description: The only powers of an 𝑁-th root of unity that equal 1 are the multiples of 𝑁. In other words, -1↑𝑐(2 / 𝑁) has order 𝑁 in the multiplicative group of nonzero complex numbers. (In fact, these and their powers are the only elements of finite order in the complex numbers.) (Contributed by Mario Carneiro, 28-Apr-2016.)
Assertion
Ref Expression
root1eq1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))

Proof of Theorem root1eq1
StepHypRef Expression
1 2re 10967 . . . . . . . 8 2 ∈ ℝ
2 simpl 472 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℕ)
3 nndivre 10933 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (2 / 𝑁) ∈ ℝ)
41, 2, 3sylancr 694 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℝ)
54recnd 9947 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 / 𝑁) ∈ ℂ)
6 ax-icn 9874 . . . . . . . 8 i ∈ ℂ
7 picn 24015 . . . . . . . 8 π ∈ ℂ
86, 7mulcli 9924 . . . . . . 7 (i · π) ∈ ℂ
98a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (i · π) ∈ ℂ)
105, 9mulcld 9939 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((2 / 𝑁) · (i · π)) ∈ ℂ)
11 efexp 14670 . . . . 5 ((((2 / 𝑁) · (i · π)) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
1210, 11sylancom 698 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
13 zcn 11259 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
1413adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℂ)
15 nncn 10905 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
17 2cn 10968 . . . . . . . . 9 2 ∈ ℂ
1817a1i 11 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 2 ∈ ℂ)
19 nnne0 10930 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ≠ 0)
2114, 16, 18, 20div32d 10703 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · 2) = (𝐾 · (2 / 𝑁)))
2221oveq1d 6564 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · 2) · (i · π)) = ((𝐾 · (2 / 𝑁)) · (i · π)))
2314, 16, 20divcld 10680 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝐾 / 𝑁) ∈ ℂ)
2423, 18, 9mulassd 9942 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · 2) · (i · π)) = ((𝐾 / 𝑁) · (2 · (i · π))))
2514, 5, 9mulassd 9942 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 · (2 / 𝑁)) · (i · π)) = (𝐾 · ((2 / 𝑁) · (i · π))))
2622, 24, 253eqtr3d 2652 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · (2 · (i · π))) = (𝐾 · ((2 / 𝑁) · (i · π))))
2726fveq2d 6107 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = (exp‘(𝐾 · ((2 / 𝑁) · (i · π)))))
28 neg1cn 11001 . . . . . . . 8 -1 ∈ ℂ
2928a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ∈ ℂ)
30 neg1ne0 11003 . . . . . . . 8 -1 ≠ 0
3130a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → -1 ≠ 0)
3229, 31, 5cxpefd 24258 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) = (exp‘((2 / 𝑁) · (log‘-1))))
33 logm1 24139 . . . . . . . 8 (log‘-1) = (i · π)
3433oveq2i 6560 . . . . . . 7 ((2 / 𝑁) · (log‘-1)) = ((2 / 𝑁) · (i · π))
3534fveq2i 6106 . . . . . 6 (exp‘((2 / 𝑁) · (log‘-1))) = (exp‘((2 / 𝑁) · (i · π)))
3632, 35syl6eq 2660 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (-1↑𝑐(2 / 𝑁)) = (exp‘((2 / 𝑁) · (i · π))))
3736oveq1d 6564 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) = ((exp‘((2 / 𝑁) · (i · π)))↑𝐾))
3812, 27, 373eqtr4rd 2655 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((-1↑𝑐(2 / 𝑁))↑𝐾) = (exp‘((𝐾 / 𝑁) · (2 · (i · π)))))
3938eqeq1d 2612 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ (exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1))
4017, 8mulcli 9924 . . . 4 (2 · (i · π)) ∈ ℂ
41 mulcl 9899 . . . 4 (((𝐾 / 𝑁) ∈ ℂ ∧ (2 · (i · π)) ∈ ℂ) → ((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ)
4223, 40, 41sylancl 693 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ)
43 efeq1 24079 . . 3 (((𝐾 / 𝑁) · (2 · (i · π))) ∈ ℂ → ((exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1 ↔ (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ))
4442, 43syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((exp‘((𝐾 / 𝑁) · (2 · (i · π)))) = 1 ↔ (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ))
456, 17, 7mul12i 10110 . . . . . 6 (i · (2 · π)) = (2 · (i · π))
4645oveq2i 6560 . . . . 5 (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) = (((𝐾 / 𝑁) · (2 · (i · π))) / (2 · (i · π)))
4740a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 · (i · π)) ∈ ℂ)
48 2ne0 10990 . . . . . . . 8 2 ≠ 0
49 ine0 10344 . . . . . . . . 9 i ≠ 0
50 pire 24014 . . . . . . . . . 10 π ∈ ℝ
51 pipos 24016 . . . . . . . . . 10 0 < π
5250, 51gt0ne0ii 10443 . . . . . . . . 9 π ≠ 0
536, 7, 49, 52mulne0i 10549 . . . . . . . 8 (i · π) ≠ 0
5417, 8, 48, 53mulne0i 10549 . . . . . . 7 (2 · (i · π)) ≠ 0
5554a1i 11 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (2 · (i · π)) ≠ 0)
5623, 47, 55divcan4d 10686 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · (2 · (i · π))) / (2 · (i · π))) = (𝐾 / 𝑁))
5746, 56syl5eq 2656 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) = (𝐾 / 𝑁))
5857eleq1d 2672 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ ↔ (𝐾 / 𝑁) ∈ ℤ))
59 nnz 11276 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6059adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
61 simpr 476 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
62 dvdsval2 14824 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝐾 / 𝑁) ∈ ℤ))
6360, 20, 61, 62syl3anc 1318 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝐾 / 𝑁) ∈ ℤ))
6458, 63bitr4d 270 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ((((𝐾 / 𝑁) · (2 · (i · π))) / (i · (2 · π))) ∈ ℤ ↔ 𝑁𝐾))
6539, 44, 643bitrd 293 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((-1↑𝑐(2 / 𝑁))↑𝐾) = 1 ↔ 𝑁𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   · cmul 9820  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  cz 11254  cexp 12722  expce 14631  πcpi 14636  cdvds 14821  logclog 24105  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  dchrptlem1  24789  dchrptlem2  24790
  Copyright terms: Public domain W3C validator