MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzdvds Structured version   Visualization version   GIF version

Theorem odzdvds 15338
Description: The only powers of 𝐴 that are congruent to 1 are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzdvds (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))

Proof of Theorem odzdvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0re 11178 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
21adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
3 odzcl 15336 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) ∈ ℕ)
43adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℕ)
54nnrpd 11746 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℝ+)
6 modlt 12541 . . . . . . . 8 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ+) → (𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴))
72, 5, 6syl2anc 691 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴))
8 nn0z 11277 . . . . . . . . . . 11 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
98adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
109, 4zmodcld 12553 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0)
1110nn0red 11229 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℝ)
124nnred 10912 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℝ)
1311, 12ltnled 10063 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) < ((od𝑁)‘𝐴) ↔ ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
147, 13mpbid 221 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬ ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
15 oveq2 6557 . . . . . . . . . . . 12 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → (𝐴𝑛) = (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))))
1615oveq1d 6564 . . . . . . . . . . 11 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → ((𝐴𝑛) − 1) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1))
1716breq2d 4595 . . . . . . . . . 10 (𝑛 = (𝐾 mod ((od𝑁)‘𝐴)) → (𝑁 ∥ ((𝐴𝑛) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
1817elrab 3331 . . . . . . . . 9 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ↔ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
19 ssrab2 3650 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ ℕ
20 nnuz 11599 . . . . . . . . . . 11 ℕ = (ℤ‘1)
2119, 20sseqtri 3600 . . . . . . . . . 10 {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ (ℤ‘1)
22 infssuzle 11647 . . . . . . . . . 10 (({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} ⊆ (ℤ‘1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2321, 22mpan 702 . . . . . . . . 9 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ {𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)} → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2418, 23sylbir 224 . . . . . . . 8 (((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
2524ancoms 468 . . . . . . 7 ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) → inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴)))
26 odzval 15334 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
2726adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
2827breq1d 4593 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴)) ↔ inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
2925, 28syl5ibr 235 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) → ((od𝑁)‘𝐴) ≤ (𝐾 mod ((od𝑁)‘𝐴))))
3014, 29mtod 188 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
31 imnan 437 . . . . 5 ((𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ) ↔ ¬ (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
3230, 31sylibr 223 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → ¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ))
33 elnn0 11171 . . . . . 6 ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0 ↔ ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3410, 33sylib 207 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ ∨ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3534ord 391 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (¬ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ → (𝐾 mod ((od𝑁)‘𝐴)) = 0))
3632, 35syld 46 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) → (𝐾 mod ((od𝑁)‘𝐴)) = 0))
37 simpl1 1057 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℕ)
3837nnzd 11357 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
39 dvds0 14835 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∥ 0)
4038, 39syl 17 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ 0)
41 simpl2 1058 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℤ)
4241zcnd 11359 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐴 ∈ ℂ)
4342exp0d 12864 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑0) = 1)
4443oveq1d 6564 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = (1 − 1))
45 1m1e0 10966 . . . . . 6 (1 − 1) = 0
4644, 45syl6eq 2660 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑0) − 1) = 0)
4740, 46breqtrrd 4611 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑0) − 1))
48 oveq2 6557 . . . . . 6 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) = (𝐴↑0))
4948oveq1d 6564 . . . . 5 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) = ((𝐴↑0) − 1))
5049breq2d 4595 . . . 4 ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ↔ 𝑁 ∥ ((𝐴↑0) − 1)))
5147, 50syl5ibrcom 236 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐾 mod ((od𝑁)‘𝐴)) = 0 → 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
5236, 51impbid 201 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1) ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
534nnnn0d 11228 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((od𝑁)‘𝐴) ∈ ℕ0)
542, 4nndivred 10946 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 / ((od𝑁)‘𝐴)) ∈ ℝ)
55 nn0ge0 11195 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
5655adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤ 𝐾)
574nngt0d 10941 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 < ((od𝑁)‘𝐴))
58 ge0div 10769 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ ∧ 0 < ((od𝑁)‘𝐴)) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))))
592, 12, 57, 58syl3anc 1318 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))))
6056, 59mpbid 221 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 0 ≤ (𝐾 / ((od𝑁)‘𝐴)))
61 flge0nn0 12483 . . . . . . . . . 10 (((𝐾 / ((od𝑁)‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐾 / ((od𝑁)‘𝐴))) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0)
6254, 60, 61syl2anc 691 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0)
6353, 62nn0mulcld 11233 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℕ0)
64 zexpcl 12737 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ)
6541, 63, 64syl2anc 691 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℤ)
6665zred 11358 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℝ)
67 1red 9934 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℝ)
68 zexpcl 12737 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝐾 mod ((od𝑁)‘𝐴)) ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ)
6941, 10, 68syl2anc 691 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ)
7037nnrpd 11746 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℝ+)
7142, 62, 53expmuld 12873 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) = ((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))))
7271oveq1d 6564 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
73 zexpcl 12737 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((od𝑁)‘𝐴) ∈ ℕ0) → (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ)
7441, 53, 73syl2anc 691 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ)
75 1zzd 11285 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℤ)
76 odzid 15337 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
7776adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
78 moddvds 14829 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴↑((od𝑁)‘𝐴)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
7937, 74, 75, 78syl3anc 1318 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
8077, 79mpbird 246 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁))
81 modexp 12861 . . . . . . . 8 ((((𝐴↑((od𝑁)‘𝐴)) ∈ ℤ ∧ 1 ∈ ℤ) ∧ ((⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℕ0𝑁 ∈ ℝ+) ∧ ((𝐴↑((od𝑁)‘𝐴)) mod 𝑁) = (1 mod 𝑁)) → (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
8274, 75, 62, 70, 80, 81syl221anc 1329 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑((od𝑁)‘𝐴))↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁))
8354flcld 12461 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℤ)
84 1exp 12751 . . . . . . . . 9 ((⌊‘(𝐾 / ((od𝑁)‘𝐴))) ∈ ℤ → (1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) = 1)
8583, 84syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) = 1)
8685oveq1d 6564 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1↑(⌊‘(𝐾 / ((od𝑁)‘𝐴)))) mod 𝑁) = (1 mod 𝑁))
8772, 82, 863eqtrd 2648 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (1 mod 𝑁))
88 modmul1 12585 . . . . . 6 ((((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ ∧ 𝑁 ∈ ℝ+) ∧ ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) mod 𝑁) = (1 mod 𝑁)) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁))
8966, 67, 69, 70, 87, 88syl221anc 1329 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁))
9042, 10, 63expaddd 12872 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴)))) = ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))))
91 modval 12532 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ ((od𝑁)‘𝐴) ∈ ℝ+) → (𝐾 mod ((od𝑁)‘𝐴)) = (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))))
922, 5, 91syl2anc 691 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐾 mod ((od𝑁)‘𝐴)) = (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))))
9392oveq2d 6565 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴))) = ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))))))
9463nn0cnd 11230 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) ∈ ℂ)
952recnd 9947 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℂ)
9694, 95pncan3d 10274 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 − (((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))))) = 𝐾)
9793, 96eqtrd 2644 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴))) = 𝐾)
9897oveq2d 6565 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑((((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴)))) + (𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴𝐾))
9990, 98eqtr3d 2646 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴𝐾))
10099oveq1d 6564 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(((od𝑁)‘𝐴) · (⌊‘(𝐾 / ((od𝑁)‘𝐴))))) · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((𝐴𝐾) mod 𝑁))
10169zcnd 11359 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℂ)
102101mulid2d 9937 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) = (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))))
103102oveq1d 6564 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((1 · (𝐴↑(𝐾 mod ((od𝑁)‘𝐴)))) mod 𝑁) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁))
10489, 100, 1033eqtr3d 2652 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → ((𝐴𝐾) mod 𝑁) = ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁))
105104eqeq1d 2612 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁)))
106 zexpcl 12737 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
10741, 106sylancom 698 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝐴𝐾) ∈ ℤ)
108 moddvds 14829 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴𝐾) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴𝐾) − 1)))
10937, 107, 75, 108syl3anc 1318 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴𝐾) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴𝐾) − 1)))
110 moddvds 14829 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
11137, 69, 75, 110syl3anc 1318 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
112105, 109, 1113bitr3d 297 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ 𝑁 ∥ ((𝐴↑(𝐾 mod ((od𝑁)‘𝐴))) − 1)))
113 dvdsval3 14825 . . 3 ((((od𝑁)‘𝐴) ∈ ℕ ∧ 𝐾 ∈ ℤ) → (((od𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
1144, 9, 113syl2anc 691 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (((od𝑁)‘𝐴) ∥ 𝐾 ↔ (𝐾 mod ((od𝑁)‘𝐴)) = 0))
11552, 112, 1143bitr4d 299 1 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  +crp 11708  cfl 12453   mod cmo 12530  cexp 12722  cdvds 14821   gcd cgcd 15054  odcodz 15306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-odz 15308  df-phi 15309
This theorem is referenced by:  odzphi  15339  pockthlem  15447  odz2prm2pw  40013  fmtnoprmfac2  40017
  Copyright terms: Public domain W3C validator