MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul1 Structured version   Visualization version   GIF version

Theorem modmul1 12585
Description: Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by NM, 12-Nov-2008.)
Assertion
Ref Expression
modmul1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Proof of Theorem modmul1
StepHypRef Expression
1 modval 12532 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
2 modval 12532 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
31, 2eqeqan12d 2626 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) ∧ (𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
43anandirs 870 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐷 ∈ ℝ+) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
54adantrl 748 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
6 oveq1 6556 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
75, 6syl6bi 242 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
8 rpcn 11717 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
98ad2antll 761 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℂ)
10 zcn 11259 . . . . . . . . . . 11 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
1110ad2antrl 760 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
12 rerpdivcl 11737 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐴 / 𝐷) ∈ ℝ)
1312flcld 12461 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
1413zcnd 11359 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
1514adantrl 748 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
169, 11, 15mulassd 9942 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))))
179, 11, 15mul32d 10125 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
1816, 17eqtr3d 2646 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
1918oveq2d 6565 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
20 recn 9905 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2120adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐴 ∈ ℂ)
228adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
2322, 14mulcld 9939 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2423adantrl 748 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2521, 24, 11subdird 10366 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
2619, 25eqtr4d 2647 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
2726adantlr 747 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
288ad2antll 761 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℂ)
2910ad2antrl 760 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℂ)
30 rerpdivcl 11737 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐵 / 𝐷) ∈ ℝ)
3130flcld 12461 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3231zcnd 11359 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3332adantrl 748 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3428, 29, 33mulassd 9942 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))
3528, 29, 33mul32d 10125 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3634, 35eqtr3d 2646 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3736oveq2d 6565 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
38 recn 9905 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3938adantr 480 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐵 ∈ ℂ)
408adantl 481 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → 𝐷 ∈ ℂ)
4140, 32mulcld 9939 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4241adantrl 748 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4339, 42, 29subdird 10366 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
4437, 43eqtr4d 2647 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4544adantll 746 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4627, 45eqeq12d 2625 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
477, 46sylibrd 248 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))))
48 oveq1 6556 . . . 4 (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷))
49 zre 11258 . . . . . . . . 9 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
50 remulcl 9900 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
5149, 50sylan2 490 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℝ)
5251adantrr 749 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐴 · 𝐶) ∈ ℝ)
53 simprr 792 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
54 simprl 790 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℤ)
5513adantrl 748 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
5654, 55zmulcld 11364 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ)
57 modcyc2 12568 . . . . . . 7 (((𝐴 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5852, 53, 56, 57syl3anc 1318 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5958adantlr 747 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
60 remulcl 9900 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐶) ∈ ℝ)
6149, 60sylan2 490 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℝ)
6261adantrr 749 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐵 · 𝐶) ∈ ℝ)
63 simprr 792 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐷 ∈ ℝ+)
64 simprl 790 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → 𝐶 ∈ ℤ)
6531adantrl 748 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
6664, 65zmulcld 11364 . . . . . . 7 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ)
67 modcyc2 12568 . . . . . . 7 (((𝐵 · 𝐶) ∈ ℝ ∧ 𝐷 ∈ ℝ+ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
6862, 63, 66, 67syl3anc 1318 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
6968adantll 746 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
7059, 69eqeq12d 2625 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
7148, 70syl5ib 233 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
7247, 71syld 46 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+)) → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
73723impia 1253 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  cr 9814   · cmul 9820  cmin 10145   / cdiv 10563  cz 11254  +crp 11708  cfl 12453   mod cmo 12530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531
This theorem is referenced by:  modmul12d  12586  modnegd  12587  modmulmod  12597  eulerthlem2  15325  fermltl  15327  odzdvds  15338  wilthlem2  24595  lgsdir2lem4  24853  lgsdirprm  24856  gausslemma2d  24899  pellexlem6  36416
  Copyright terms: Public domain W3C validator