MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzdvds Structured version   Unicode version

Theorem odzdvds 14698
Description: The only powers of  A that are congruent to  1 are the multiples of the order of  A. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
odzdvds  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)

Proof of Theorem odzdvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0re 10867 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  RR )
21adantl 467 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  RR )
3 odzcl 14696 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  NN )
43adantr 466 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN )
54nnrpd 11328 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  RR+ )
6 modlt 12093 . . . . . . . 8  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR+ )  ->  ( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
72, 5, 6syl2anc 665 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
8 nn0z 10949 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  K  e.  ZZ )
98adantl 467 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  ZZ )
109, 4zmodcld 12103 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN0 )
1110nn0red 10915 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  RR )
124nnred 10613 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  RR )
1311, 12ltnled 9771 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
)  <->  -.  ( ( odZ `  N ) `
 A )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
147, 13mpbid 213 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( ( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) )
15 oveq2 6304 . . . . . . . . . . . 12  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( A ^ n )  =  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )
1615oveq1d 6311 . . . . . . . . . . 11  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) )
1716breq2d 4429 . . . . . . . . . 10  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
1817elrab 3226 . . . . . . . . 9  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  /\  N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 ) ) )
19 ssrab2 3543 . . . . . . . . . . 11  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  C_  NN
20 nnuz 11183 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
2119, 20sseqtri 3493 . . . . . . . . . 10  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  C_  ( ZZ>=
`  1 )
22 infmssuzleOLD 11235 . . . . . . . . . 10  |-  ( ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } 
C_  ( ZZ>= `  1
)  /\  ( K  mod  ( ( odZ `  N ) `  A
) )  e.  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
2321, 22mpan 674 . . . . . . . . 9  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  )  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) )
2418, 23sylbir 216 . . . . . . . 8  |-  ( ( ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
2524ancoms 454 . . . . . . 7  |-  ( ( N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
26 odzval 14694 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  =  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  ) )
2726adantr 466 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  =  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  ) )
2827breq1d 4427 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  <_  ( K  mod  ( ( odZ `  N ) `  A ) )  <->  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  )  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
2925, 28syl5ibr 224 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN )  ->  (
( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
3014, 29mtod 180 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN ) )
31 imnan 423 . . . . 5  |-  ( ( N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) 
<->  -.  ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN ) )
3230, 31sylibr 215 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) )
33 elnn0 10860 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  \/  ( K  mod  ( ( odZ `  N ) `  A ) )  =  0 ) )
3410, 33sylib 199 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  e.  NN  \/  ( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
3534ord 378 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( -.  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
3632, 35syld 45 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
37 simpl1 1008 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  NN )
3837nnzd 11028 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  ZZ )
39 dvds0 14285 . . . . . 6  |-  ( N  e.  ZZ  ->  N  ||  0 )
4038, 39syl 17 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  0 )
41 simpl2 1009 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  ZZ )
4241zcnd 11030 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  CC )
4342exp0d 12396 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
4443oveq1d 6311 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  ( 1  -  1 ) )
45 1m1e0 10667 . . . . . 6  |-  ( 1  -  1 )  =  0
4644, 45syl6eq 2477 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  0 )
4740, 46breqtrrd 4443 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ 0 )  - 
1 ) )
48 oveq2 6304 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( A ^
0 ) )
4948oveq1d 6311 . . . . 5  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  =  ( ( A ^ 0 )  -  1 ) )
5049breq2d 4429 . . . 4  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  N  ||  (
( A ^ 0 )  -  1 ) ) )
5147, 50syl5ibrcom 225 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  =  0  ->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
5236, 51impbid 193 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
534nnnn0d 10914 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN0 )
542, 4nndivred 10647 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  /  (
( odZ `  N ) `  A
) )  e.  RR )
55 nn0ge0 10884 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  0  <_  K )
5655adantl 467 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  K )
574nngt0d 10642 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <  ( ( odZ `  N ) `
 A ) )
58 ge0div 10461 . . . . . . . . . . . 12  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
592, 12, 57, 58syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
6056, 59mpbid 213 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )
61 flge0nn0 12040 . . . . . . . . . 10  |-  ( ( ( K  /  (
( odZ `  N ) `  A
) )  e.  RR  /\  0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )  ->  ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) )  e. 
NN0 )
6254, 60, 61syl2anc 665 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  NN0 )
6353, 62nn0mulcld 10919 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )
64 zexpcl 12273 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
6541, 63, 64syl2anc 665 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
6665zred 11029 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  RR )
67 1red 9647 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  RR )
68 zexpcl 12273 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0 )  ->  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
6941, 10, 68syl2anc 665 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
7037nnrpd 11328 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  RR+ )
7142, 62, 53expmuld 12405 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  =  ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )
7271oveq1d 6311 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  mod  N ) )
73 zexpcl 12273 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  NN0 )  ->  ( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
7441, 53, 73syl2anc 665 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
75 1zzd 10957 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  ZZ )
76 odzid 14697 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( ( odZ `  N ) `  A
) )  -  1 ) )
7776adantr 466 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
78 moddvds 14279 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A ^ ( ( odZ `  N
) `  A )
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
7937, 74, 75, 78syl3anc 1264 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
8077, 79mpbird 235 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( odZ `  N ) `  A
) )  mod  N
)  =  ( 1  mod  N ) )
81 modexp 12393 . . . . . . . 8  |-  ( ( ( ( A ^
( ( odZ `  N ) `  A
) )  e.  ZZ  /\  1  e.  ZZ )  /\  ( ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) )  e. 
NN0  /\  N  e.  RR+ )  /\  ( ( A ^ ( ( odZ `  N
) `  A )
)  mod  N )  =  ( 1  mod 
N ) )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) ) ^
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( 1 ^ ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) ) )  mod  N ) )
8274, 75, 62, 70, 80, 81syl221anc 1275 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) ) ^
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( 1 ^ ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) ) )  mod  N ) )
8354flcld 12020 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
84 1exp 12287 . . . . . . . . 9  |-  ( ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
8583, 84syl 17 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1 ^ ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
8685oveq1d 6311 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1 ^ ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
8772, 82, 863eqtrd 2465 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
88 modmul1 12129 . . . . . 6  |-  ( ( ( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  RR  /\  1  e.  RR )  /\  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  e.  ZZ  /\  N  e.  RR+ )  /\  (
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( 1  mod 
N ) )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N ) )
8966, 67, 69, 70, 87, 88syl221anc 1275 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N ) )
9042, 10, 63expaddd 12404 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) ) )
91 modval 12084 . . . . . . . . . . 11  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR+ )  ->  ( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
922, 5, 91syl2anc 665 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
9392oveq2d 6312 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  -  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) ) )
9463nn0cnd 10916 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  CC )
952recnd 9658 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  CC )
9694, 95pncan3d 9978 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  -  ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) ) )  =  K )
9793, 96eqtrd 2461 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  K )
9897oveq2d 6312 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
9990, 98eqtr3d 2463 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
10099oveq1d 6311 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( A ^ K )  mod  N
) )
10169zcnd 11030 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  CC )
102101mulid2d 9650 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) ) )
103102oveq1d 6311 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N ) )
10489, 100, 1033eqtr3d 2469 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^ K )  mod  N
)  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  mod  N ) )
105104eqeq1d 2422 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N ) ) )
106 zexpcl 12273 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
10741, 106sylancom 671 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
108 moddvds 14279 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ K )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^ K )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ K
)  -  1 ) ) )
10937, 107, 75, 108syl3anc 1264 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ K )  - 
1 ) ) )
110 moddvds 14279 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
11137, 69, 75, 110syl3anc 1264 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
112105, 109, 1113bitr3d 286 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
113 dvdsval3 14276 . . 3  |-  ( ( ( ( odZ `  N ) `  A
)  e.  NN  /\  K  e.  ZZ )  ->  ( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
1144, 9, 113syl2anc 665 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
11552, 112, 1143bitr4d 288 1  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   {crab 2777    C_ wss 3433   class class class wbr 4417   `'ccnv 4844   ` cfv 5592  (class class class)co 6296   supcsup 7951   RRcr 9527   0cc0 9528   1c1 9529    + caddc 9531    x. cmul 9533    < clt 9664    <_ cle 9665    - cmin 9849    / cdiv 10258   NNcn 10598   NN0cn0 10858   ZZcz 10926   ZZ>=cuz 11148   RR+crp 11291   |_cfl 12012    mod cmo 12082   ^cexp 12258    || cdvds 14272    gcd cgcd 14431   odZcodz 14669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-oadd 7185  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-sup 7953  df-inf 7954  df-card 8363  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-rp 11292  df-fz 11772  df-fzo 11903  df-fl 12014  df-mod 12083  df-seq 12200  df-exp 12259  df-hash 12502  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-dvds 14273  df-gcd 14432  df-odz 14671  df-phi 14672
This theorem is referenced by:  odzphi  14699  pockthlem  14801
  Copyright terms: Public domain W3C validator