MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odzdvds Structured version   Unicode version

Theorem odzdvds 13879
Description: The only powers of  A that are congruent to  1 are the multiples of the order of  A. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
odzdvds  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)

Proof of Theorem odzdvds
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nn0re 10600 . . . . . . . . 9  |-  ( K  e.  NN0  ->  K  e.  RR )
21adantl 466 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  RR )
3 odzcl 13877 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  e.  NN )
43adantr 465 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN )
54nnrpd 11038 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  RR+ )
6 modlt 11730 . . . . . . . 8  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR+ )  ->  ( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
72, 5, 6syl2anc 661 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
) )
8 nn0z 10681 . . . . . . . . . . 11  |-  ( K  e.  NN0  ->  K  e.  ZZ )
98adantl 466 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  ZZ )
109, 4zmodcld 11740 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  NN0 )
1110nn0red 10649 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  e.  RR )
124nnred 10349 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  RR )
1311, 12ltnled 9533 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  <  (
( odZ `  N ) `  A
)  <->  -.  ( ( odZ `  N ) `
 A )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) ) )
147, 13mpbid 210 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( ( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) )
15 oveq2 6111 . . . . . . . . . . . 12  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( A ^ n )  =  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )
1615oveq1d 6118 . . . . . . . . . . 11  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  (
( A ^ n
)  -  1 )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) )
1716breq2d 4316 . . . . . . . . . 10  |-  ( n  =  ( K  mod  ( ( odZ `  N ) `  A
) )  ->  ( N  ||  ( ( A ^ n )  - 
1 )  <->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
1817elrab 3129 . . . . . . . . 9  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  /\  N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 ) ) )
19 ssrab2 3449 . . . . . . . . . . 11  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  C_  NN
20 nnuz 10908 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
2119, 20sseqtri 3400 . . . . . . . . . 10  |-  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  C_  ( ZZ>=
`  1 )
22 infmssuzle 10949 . . . . . . . . . 10  |-  ( ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } 
C_  ( ZZ>= `  1
)  /\  ( K  mod  ( ( odZ `  N ) `  A
) )  e.  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
2321, 22mpan 670 . . . . . . . . 9  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) }  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  )  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) )
2418, 23sylbir 213 . . . . . . . 8  |-  ( ( ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN  /\  N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
2524ancoms 453 . . . . . . 7  |-  ( ( N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN )  ->  sup ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  `'  <  )  <_ 
( K  mod  (
( odZ `  N ) `  A
) ) )
26 odzval 13875 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  =  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  ) )
2726adantr 465 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  =  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  ) )
2827breq1d 4314 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  <_  ( K  mod  ( ( odZ `  N ) `  A ) )  <->  sup ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  `'  <  )  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
2925, 28syl5ibr 221 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN )  ->  (
( odZ `  N ) `  A
)  <_  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )
3014, 29mtod 177 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  -.  ( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN ) )
31 imnan 422 . . . . 5  |-  ( ( N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) 
<->  -.  ( N  ||  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  /\  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN ) )
3230, 31sylibr 212 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  ->  -.  ( K  mod  (
( odZ `  N ) `  A
) )  e.  NN ) )
33 elnn0 10593 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0  <->  ( ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  \/  ( K  mod  ( ( odZ `  N ) `  A ) )  =  0 ) )
3410, 33sylib 196 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  e.  NN  \/  ( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
3534ord 377 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( -.  ( K  mod  ( ( odZ `  N ) `  A ) )  e.  NN  ->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
3632, 35syld 44 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  0 ) )
37 simpl1 991 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  NN )
3837nnzd 10758 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  ZZ )
39 dvds0 13560 . . . . . 6  |-  ( N  e.  ZZ  ->  N  ||  0 )
4038, 39syl 16 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  0 )
41 simpl2 992 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  ZZ )
4241zcnd 10760 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  A  e.  CC )
4342exp0d 12014 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ 0 )  =  1 )
4443oveq1d 6118 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  ( 1  -  1 ) )
45 1m1e0 10402 . . . . . 6  |-  ( 1  -  1 )  =  0
4644, 45syl6eq 2491 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
0 )  -  1 )  =  0 )
4740, 46breqtrrd 4330 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ 0 )  - 
1 ) )
48 oveq2 6111 . . . . . 6  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( A ^
0 ) )
4948oveq1d 6118 . . . . 5  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  - 
1 )  =  ( ( A ^ 0 )  -  1 ) )
5049breq2d 4316 . . . 4  |-  ( ( K  mod  ( ( odZ `  N
) `  A )
)  =  0  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  N  ||  (
( A ^ 0 )  -  1 ) ) )
5147, 50syl5ibrcom 222 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( K  mod  ( ( odZ `  N ) `  A
) )  =  0  ->  N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 ) ) )
5236, 51impbid 191 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  -  1 )  <->  ( K  mod  ( ( odZ `  N ) `  A
) )  =  0 ) )
534nnnn0d 10648 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( odZ `  N ) `  A
)  e.  NN0 )
542, 4nndivred 10382 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  /  (
( odZ `  N ) `  A
) )  e.  RR )
55 nn0ge0 10617 . . . . . . . . . . . 12  |-  ( K  e.  NN0  ->  0  <_  K )
5655adantl 466 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  K )
574nngt0d 10377 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <  ( ( odZ `  N ) `
 A ) )
58 ge0div 10208 . . . . . . . . . . . 12  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR  /\  0  <  ( ( odZ `  N ) `  A ) )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
592, 12, 57, 58syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 0  <_  K  <->  0  <_  ( K  / 
( ( odZ `  N ) `  A
) ) ) )
6056, 59mpbid 210 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )
61 flge0nn0 11678 . . . . . . . . . 10  |-  ( ( ( K  /  (
( odZ `  N ) `  A
) )  e.  RR  /\  0  <_  ( K  /  ( ( odZ `  N ) `  A ) ) )  ->  ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) )  e. 
NN0 )
6254, 60, 61syl2anc 661 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  NN0 )
6353, 62nn0mulcld 10653 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )
64 zexpcl 11892 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
6541, 63, 64syl2anc 661 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  ZZ )
6665zred 10759 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  RR )
67 1red 9413 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  RR )
68 zexpcl 11892 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( K  mod  ( ( odZ `  N
) `  A )
)  e.  NN0 )  ->  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
6941, 10, 68syl2anc 661 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
7037nnrpd 11038 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  e.  RR+ )
7142, 62, 53expmuld 12023 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  =  ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )
7271oveq1d 6118 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( ( ( A ^ ( ( odZ `  N
) `  A )
) ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  mod  N ) )
73 zexpcl 11892 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( odZ `  N ) `  A
)  e.  NN0 )  ->  ( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
7441, 53, 73syl2anc 661 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( odZ `  N ) `  A
) )  e.  ZZ )
75 1zzd 10689 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
1  e.  ZZ )
76 odzid 13878 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^
( ( odZ `  N ) `  A
) )  -  1 ) )
7776adantr 465 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) )
78 moddvds 13554 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( A ^ ( ( odZ `  N
) `  A )
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
7937, 74, 75, 78syl3anc 1218 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  - 
1 ) ) )
8077, 79mpbird 232 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( odZ `  N ) `  A
) )  mod  N
)  =  ( 1  mod  N ) )
81 modexp 12011 . . . . . . . 8  |-  ( ( ( ( A ^
( ( odZ `  N ) `  A
) )  e.  ZZ  /\  1  e.  ZZ )  /\  ( ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) )  e. 
NN0  /\  N  e.  RR+ )  /\  ( ( A ^ ( ( odZ `  N
) `  A )
)  mod  N )  =  ( 1  mod 
N ) )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) ) ^
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( 1 ^ ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) ) )  mod  N ) )
8274, 75, 62, 70, 80, 81syl221anc 1229 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( odZ `  N ) `  A ) ) ^
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( 1 ^ ( |_ `  ( K  /  (
( odZ `  N ) `  A
) ) ) )  mod  N ) )
8354flcld 11660 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ )
84 1exp 11905 . . . . . . . . 9  |-  ( ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
8583, 84syl 16 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1 ^ ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  =  1 )
8685oveq1d 6118 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1 ^ ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
8772, 82, 863eqtrd 2479 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( 1  mod 
N ) )
88 modmul1 11764 . . . . . 6  |-  ( ( ( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  e.  RR  /\  1  e.  RR )  /\  ( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  e.  ZZ  /\  N  e.  RR+ )  /\  (
( A ^ (
( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  mod  N )  =  ( 1  mod 
N ) )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N ) )
8966, 67, 69, 70, 87, 88syl221anc 1229 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N ) )
9042, 10, 63expaddd 12022 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) ) )
91 modval 11722 . . . . . . . . . . 11  |-  ( ( K  e.  RR  /\  ( ( odZ `  N ) `  A
)  e.  RR+ )  ->  ( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
922, 5, 91syl2anc 661 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( K  mod  (
( odZ `  N ) `  A
) )  =  ( K  -  ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) )
9392oveq2d 6119 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  ( ( ( ( odZ `  N ) `  A
)  x.  ( |_
`  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  -  ( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) ) ) )
9463nn0cnd 10650 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  e.  CC )
952recnd 9424 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  K  e.  CC )
9694, 95pncan3d 9734 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  -  ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) ) )  =  K )
9793, 96eqtrd 2475 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A ) ) )  =  K )
9897oveq2d 6119 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ (
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) )  +  ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
9990, 98eqtr3d 2477 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^
( ( ( odZ `  N ) `  A )  x.  ( |_ `  ( K  / 
( ( odZ `  N ) `  A
) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^ K ) )
10099oveq1d 6118 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( ( ( odZ `  N
) `  A )  x.  ( |_ `  ( K  /  ( ( odZ `  N ) `  A ) ) ) ) )  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  mod  N )  =  ( ( A ^ K )  mod  N
) )
10169zcnd 10760 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  CC )
102101mulid2d 9416 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) ) )  =  ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) ) )
103102oveq1d 6118 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( 1  x.  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) ) )  mod  N )  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N ) )
10489, 100, 1033eqtr3d 2483 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( A ^ K )  mod  N
)  =  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  mod  N ) )
105104eqeq1d 2451 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N ) ) )
106 zexpcl 11892 . . . . 5  |-  ( ( A  e.  ZZ  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
10741, 106sylancom 667 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( A ^ K
)  e.  ZZ )
108 moddvds 13554 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ K )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^ K )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( A ^ K
)  -  1 ) ) )
10937, 107, 75, 108syl3anc 1218 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ K )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ K )  - 
1 ) ) )
110 moddvds 13554 . . . 4  |-  ( ( N  e.  NN  /\  ( A ^ ( K  mod  ( ( odZ `  N ) `  A ) ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( A ^
( K  mod  (
( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
11137, 69, 75, 110syl3anc 1218 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
112105, 109, 1113bitr3d 283 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
N  ||  ( ( A ^ ( K  mod  ( ( odZ `  N ) `  A
) ) )  - 
1 ) ) )
113 dvdsval3 13551 . . 3  |-  ( ( ( ( odZ `  N ) `  A
)  e.  NN  /\  K  e.  ZZ )  ->  ( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
1144, 9, 113syl2anc 661 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( ( ( odZ `  N ) `  A )  ||  K  <->  ( K  mod  ( ( odZ `  N
) `  A )
)  =  0 ) )
11552, 112, 1143bitr4d 285 1  |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  /\  K  e.  NN0 )  -> 
( N  ||  (
( A ^ K
)  -  1 )  <-> 
( ( odZ `  N ) `  A
)  ||  K )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {crab 2731    C_ wss 3340   class class class wbr 4304   `'ccnv 4851   ` cfv 5430  (class class class)co 6103   supcsup 7702   RRcr 9293   0cc0 9294   1c1 9295    + caddc 9297    x. cmul 9299    < clt 9430    <_ cle 9431    - cmin 9607    / cdiv 10005   NNcn 10334   NN0cn0 10591   ZZcz 10658   ZZ>=cuz 10873   RR+crp 11003   |_cfl 11652    mod cmo 11720   ^cexp 11877    || cdivides 13547    gcd cgcd 13702   odZcodz 13850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-map 7228  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-rp 11004  df-fz 11450  df-fzo 11561  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-hash 12116  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-dvds 13548  df-gcd 13703  df-odz 13852  df-phi 13853
This theorem is referenced by:  odzphi  13880  pockthlem  13978
  Copyright terms: Public domain W3C validator