MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1rlimmul Structured version   Visualization version   GIF version

Theorem o1rlimmul 14197
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014.)
Assertion
Ref Expression
o1rlimmul ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) ⇝𝑟 0)

Proof of Theorem o1rlimmul
Dummy variables 𝑥 𝑦 𝑧 𝑎 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1f 14108 . . . . 5 (𝐹 ∈ 𝑂(1) → 𝐹:dom 𝐹⟶ℂ)
21adantr 480 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹:dom 𝐹⟶ℂ)
3 ffn 5958 . . . 4 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
42, 3syl 17 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐹 Fn dom 𝐹)
5 rlimf 14080 . . . . 5 (𝐺𝑟 0 → 𝐺:dom 𝐺⟶ℂ)
65adantl 481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺:dom 𝐺⟶ℂ)
7 ffn 5958 . . . 4 (𝐺:dom 𝐺⟶ℂ → 𝐺 Fn dom 𝐺)
86, 7syl 17 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 Fn dom 𝐺)
9 o1dm 14109 . . . . 5 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
109adantr 480 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ⊆ ℝ)
11 reex 9906 . . . 4 ℝ ∈ V
12 ssexg 4732 . . . 4 ((dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐹 ∈ V)
1310, 11, 12sylancl 693 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐹 ∈ V)
14 rlimss 14081 . . . . 5 (𝐺𝑟 0 → dom 𝐺 ⊆ ℝ)
1514adantl 481 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ⊆ ℝ)
16 ssexg 4732 . . . 4 ((dom 𝐺 ⊆ ℝ ∧ ℝ ∈ V) → dom 𝐺 ∈ V)
1715, 11, 16sylancl 693 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → dom 𝐺 ∈ V)
18 eqid 2610 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
19 eqidd 2611 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
20 eqidd 2611 . . 3 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
214, 8, 13, 17, 18, 19, 20offval 6802 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))))
22 o1bdd 14110 . . . . . . 7 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:dom 𝐹⟶ℂ) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
231, 22mpdan 699 . . . . . 6 (𝐹 ∈ 𝑂(1) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
2423ad2antrr 758 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
25 fvex 6113 . . . . . . . . . 10 (𝐺𝑥) ∈ V
2625a1i 11 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
2726ralrimiva 2949 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∀𝑥 ∈ dom 𝐺(𝐺𝑥) ∈ V)
28 simplr 788 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑦 ∈ ℝ+)
29 recn 9905 . . . . . . . . . . . 12 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
3029ad2antll 761 . . . . . . . . . . 11 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 𝑚 ∈ ℂ)
3130abscld 14023 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (abs‘𝑚) ∈ ℝ)
3230absge0d 14031 . . . . . . . . . 10 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → 0 ≤ (abs‘𝑚))
3331, 32ge0p1rpd 11778 . . . . . . . . 9 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ+)
3428, 33rpdivcld 11765 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
356feqmptd 6159 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
36 simpr 476 . . . . . . . . . 10 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → 𝐺𝑟 0)
3735, 36eqbrtrrd 4607 . . . . . . . . 9 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3837ad2antrr 758 . . . . . . . 8 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ⇝𝑟 0)
3927, 34, 38rlimi 14092 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
40 inss1 3795 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
41 ssralv 3629 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚)))
4240, 41ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚))
43 inss2 3796 . . . . . . . . . . . . . 14 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
44 ssralv 3629 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4543, 44ax-mp 5 . . . . . . . . . . . . 13 (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))))
4642, 45anim12i 588 . . . . . . . . . . . 12 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
47 r19.26 3046 . . . . . . . . . . . 12 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) ↔ (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
4846, 47sylibr 223 . . . . . . . . . . 11 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
49 prth 593 . . . . . . . . . . . 12 (((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
5049ralimi 2936 . . . . . . . . . . 11 (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ (𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
5148, 50syl 17 . . . . . . . . . 10 ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))))
52 simplrl 796 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑎 ∈ ℝ)
53 simprl 790 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑏 ∈ ℝ)
5440, 10syl5ss 3579 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
5554ad3antrrr 762 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (dom 𝐹 ∩ dom 𝐺) ⊆ ℝ)
56 simprr 792 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))
5755, 56sseldd 3569 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ ℝ)
58 maxle 11896 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
5952, 53, 57, 58syl3anc 1318 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 ↔ (𝑎𝑥𝑏𝑥)))
6059biimpd 218 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (𝑎𝑥𝑏𝑥)))
616ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐺:dom 𝐺⟶ℂ)
6243sseli 3564 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
6362ad2antll 761 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐺)
6461, 63ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐺𝑥) ∈ ℂ)
6564subid1d 10260 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐺𝑥) − 0) = (𝐺𝑥))
6665fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐺𝑥) − 0)) = (abs‘(𝐺𝑥)))
6766breq1d 4593 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) ↔ (abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1))))
6864abscld 14023 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐺𝑥)) ∈ ℝ)
6934adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ+)
7069rpred 11748 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)
71 ltle 10005 . . . . . . . . . . . . . . . . . 18 (((abs‘(𝐺𝑥)) ∈ ℝ ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7268, 70, 71syl2anc 691 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7367, 72sylbid 229 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)) → (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))))
7473anim2d 587 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1)))))
752ad3antrrr 762 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝐹:dom 𝐹⟶ℂ)
7640sseli 3564 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
7776ad2antll 761 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑥 ∈ dom 𝐹)
7875, 77ffvelrnd 6268 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝐹𝑥) ∈ ℂ)
7978abscld 14023 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘(𝐹𝑥)) ∈ ℝ)
8078absge0d 14031 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐹𝑥)))
8179, 80jca 553 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))))
82 simplrr 797 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℝ)
8364absge0d 14031 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 0 ≤ (abs‘(𝐺𝑥)))
8468, 83jca 553 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))))
85 lemul12a 10760 . . . . . . . . . . . . . . . 16 (((((abs‘(𝐹𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐹𝑥))) ∧ 𝑚 ∈ ℝ) ∧ (((abs‘(𝐺𝑥)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑥))) ∧ (𝑦 / ((abs‘𝑚) + 1)) ∈ ℝ)) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8681, 82, 84, 70, 85syl22anc 1319 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘(𝐺𝑥)) ≤ (𝑦 / ((abs‘𝑚) + 1))) → ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8778, 64absmuld 14041 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) = ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))))
8887breq1d 4593 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ↔ ((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1)))))
8982recnd 9947 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ∈ ℂ)
9028adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ+)
9190rpcnd 11750 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℂ)
9233adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ+)
9392rpcnd 11750 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℂ)
9492rpne0d 11753 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ≠ 0)
9589, 91, 93, 94divassd 10715 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) = (𝑚 · (𝑦 / ((abs‘𝑚) + 1))))
96 peano2re 10088 . . . . . . . . . . . . . . . . . . . . . 22 ((abs‘𝑚) ∈ ℝ → ((abs‘𝑚) + 1) ∈ ℝ)
9731, 96syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → ((abs‘𝑚) + 1) ∈ ℝ)
9897adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘𝑚) + 1) ∈ ℝ)
9931adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) ∈ ℝ)
10082leabsd 14001 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 ≤ (abs‘𝑚))
10199ltp1d 10833 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘𝑚) < ((abs‘𝑚) + 1))
10282, 99, 98, 100, 101lelttrd 10074 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑚 < ((abs‘𝑚) + 1))
10382, 98, 90, 102ltmul1dd 11803 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦))
10490rpred 11748 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → 𝑦 ∈ ℝ)
10582, 104remulcld 9949 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · 𝑦) ∈ ℝ)
106105, 104, 92ltdivmuld 11799 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦 ↔ (𝑚 · 𝑦) < (((abs‘𝑚) + 1) · 𝑦)))
107103, 106mpbird 246 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝑚 · 𝑦) / ((abs‘𝑚) + 1)) < 𝑦)
10895, 107eqbrtrrd 4607 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦)
10978, 64mulcld 9939 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
110109abscld 14023 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ)
11182, 70remulcld 9949 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ)
112 lelttr 10007 . . . . . . . . . . . . . . . . . 18 (((abs‘((𝐹𝑥) · (𝐺𝑥))) ∈ ℝ ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
113110, 111, 104, 112syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) ∧ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) < 𝑦) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
114108, 113mpan2d 706 . . . . . . . . . . . . . . . 16 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → ((abs‘((𝐹𝑥) · (𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11588, 114sylbird 249 . . . . . . . . . . . . . . 15 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) · (abs‘(𝐺𝑥))) ≤ (𝑚 · (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11674, 86, 1153syld 58 . . . . . . . . . . . . . 14 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
11760, 116imim12d 79 . . . . . . . . . . . . 13 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ (𝑏 ∈ ℝ ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺))) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
118117anassrs 678 . . . . . . . . . . . 12 ((((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
119118ralimdva 2945 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
120 simpr 476 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
121 simplrl 796 . . . . . . . . . . . 12 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℝ)
122120, 121ifcld 4081 . . . . . . . . . . 11 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ)
123119, 122jctild 564 . . . . . . . . . 10 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝑎𝑥𝑏𝑥) → ((abs‘(𝐹𝑥)) ≤ 𝑚 ∧ (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → (if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
124 breq1 4586 . . . . . . . . . . . . 13 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → (𝑧𝑥 ↔ if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥))
125124imbi1d 330 . . . . . . . . . . . 12 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → ((𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦) ↔ (if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
126125ralbidv 2969 . . . . . . . . . . 11 (𝑧 = if(𝑎𝑏, 𝑏, 𝑎) → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦) ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
127126rspcev 3282 . . . . . . . . . 10 ((if(𝑎𝑏, 𝑏, 𝑎) ∈ ℝ ∧ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(if(𝑎𝑏, 𝑏, 𝑎) ≤ 𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
12851, 123, 127syl56 35 . . . . . . . . 9 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → ((∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) ∧ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1)))) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
129128expcomd 453 . . . . . . . 8 (((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) ∧ 𝑏 ∈ ℝ) → (∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
130129rexlimdva 3013 . . . . . . 7 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∃𝑏 ∈ ℝ ∀𝑥 ∈ dom 𝐺(𝑏𝑥 → (abs‘((𝐺𝑥) − 0)) < (𝑦 / ((abs‘𝑚) + 1))) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))))
13139, 130mpd 15 . . . . . 6 ((((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ)) → (∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
132131rexlimdvva 3020 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → (∃𝑎 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥 ∈ dom 𝐹(𝑎𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑚) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
13324, 132mpd 15 . . . 4 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
134133ralrimiva 2949 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦))
135 ffvelrn 6265 . . . . . . 7 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
1362, 76, 135syl2an 493 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
137 ffvelrn 6265 . . . . . . 7 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
1386, 62, 137syl2an 493 . . . . . 6 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
139136, 138mulcld 9939 . . . . 5 (((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
140139ralrimiva 2949 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
141140, 54rlim0 14087 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝑧𝑥 → (abs‘((𝐹𝑥) · (𝐺𝑥))) < 𝑦)))
142134, 141mpbird 246 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ⇝𝑟 0)
14321, 142eqbrtrd 4605 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐺𝑟 0) → (𝐹𝑓 · 𝐺) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  dom cdm 5038   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  +crp 11708  abscabs 13822  𝑟 crli 14064  𝑂(1)co1 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rlim 14068  df-o1 14069
This theorem is referenced by:  chtppilimlem2  24963  chpchtlim  24968
  Copyright terms: Public domain W3C validator