MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem2 Structured version   Visualization version   GIF version

Theorem chtppilimlem2 24963
Description: Lemma for chtppilim 24964. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
Assertion
Ref Expression
chtppilimlem2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝜑,𝑥,𝑧

Proof of Theorem chtppilimlem2
StepHypRef Expression
1 simpr 476 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ (2[,)+∞))
2 2re 10967 . . . . . . . . . 10 2 ∈ ℝ
3 elicopnf 12140 . . . . . . . . . 10 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
42, 3ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
51, 4sylib 207 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simpld 474 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
7 0red 9920 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ∈ ℝ)
82a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
9 2pos 10989 . . . . . . . . 9 0 < 2
109a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 2)
115simprd 478 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
127, 8, 6, 10, 11ltletrd 10076 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 < 𝑥)
136, 12elrpd 11745 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
14 chtppilim.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
1514rpred 11748 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1615adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℝ)
1713, 16rpcxpcld 24276 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) ∈ ℝ+)
18 ppinncl 24700 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (π𝑥) ∈ ℕ)
195, 18syl 17 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℕ)
2019nnrpd 11746 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → (π𝑥) ∈ ℝ+)
2117, 20rpdivcld 11765 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
2221ralrimiva 2949 . . 3 (𝜑 → ∀𝑥 ∈ (2[,)+∞)((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ+)
23 chtppilim.2 . . . 4 (𝜑𝐴 < 1)
24 1re 9918 . . . . 5 1 ∈ ℝ
25 difrp 11744 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2615, 24, 25sylancl 693 . . . 4 (𝜑 → (𝐴 < 1 ↔ (1 − 𝐴) ∈ ℝ+))
2723, 26mpbid 221 . . 3 (𝜑 → (1 − 𝐴) ∈ ℝ+)
28 ovex 6577 . . . . . . 7 (2[,)+∞) ∈ V
2928a1i 11 . . . . . 6 (𝜑 → (2[,)+∞) ∈ V)
3024a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
31 1lt2 11071 . . . . . . . . . . 11 1 < 2
3231a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 2)
3330, 8, 6, 32, 11ltletrd 10076 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 < 𝑥)
346, 33rplogcld 24179 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ+)
3513, 34rpdivcld 11765 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℝ+)
3635, 20rpdivcld 11765 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) / (π𝑥)) ∈ ℝ+)
3727adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ+)
3837rpred 11748 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℝ)
3913, 38rpcxpcld 24276 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − 𝐴)) ∈ ℝ+)
4034, 39rpdivcld 11765 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℝ+)
41 eqidd 2611 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))))
42 eqidd 2611 . . . . . 6 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4329, 36, 40, 41, 42offval2 6812 . . . . 5 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))))
4435rpcnd 11750 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 / (log‘𝑥)) ∈ ℂ)
4540rpcnd 11750 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ)
4620rpcnne0d 11757 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0))
47 div23 10583 . . . . . . . 8 (((𝑥 / (log‘𝑥)) ∈ ℂ ∧ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) ∈ ℂ ∧ ((π𝑥) ∈ ℂ ∧ (π𝑥) ≠ 0)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4844, 45, 46, 47syl3anc 1318 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))))
4934rpcnne0d 11757 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0))
5039rpcnne0d 11757 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0))
516recnd 9947 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
52 dmdcan 10614 . . . . . . . . . 10 ((((log‘𝑥) ∈ ℂ ∧ (log‘𝑥) ≠ 0) ∧ ((𝑥𝑐(1 − 𝐴)) ∈ ℂ ∧ (𝑥𝑐(1 − 𝐴)) ≠ 0) ∧ 𝑥 ∈ ℂ) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5349, 50, 51, 52syl3anc 1318 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
5444, 45mulcomd 9940 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (((log‘𝑥) / (𝑥𝑐(1 − 𝐴))) · (𝑥 / (log‘𝑥))))
5513rpcnne0d 11757 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
56 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
5756a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → 1 ∈ ℂ)
5837rpcnd 11750 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − 𝐴) ∈ ℂ)
59 cxpsub 24228 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ 1 ∈ ℂ ∧ (1 − 𝐴) ∈ ℂ) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
6055, 57, 58, 59syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))))
6116recnd 9947 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (2[,)+∞)) → 𝐴 ∈ ℂ)
62 nncan 10189 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − (1 − 𝐴)) = 𝐴)
6356, 61, 62sylancr 694 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (2[,)+∞)) → (1 − (1 − 𝐴)) = 𝐴)
6463oveq2d 6565 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 − (1 − 𝐴))) = (𝑥𝑐𝐴))
6560, 64eqtr3d 2646 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥𝑐𝐴))
6651cxp1d 24252 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐1) = 𝑥)
6766oveq1d 6564 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐1) / (𝑥𝑐(1 − 𝐴))) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6865, 67eqtr3d 2646 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (𝑥𝑐𝐴) = (𝑥 / (𝑥𝑐(1 − 𝐴))))
6953, 54, 683eqtr4d 2654 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = (𝑥𝑐𝐴))
7069oveq1d 6564 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) / (π𝑥)) = ((𝑥𝑐𝐴) / (π𝑥)))
7148, 70eqtr3d 2646 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) = ((𝑥𝑐𝐴) / (π𝑥)))
7271mpteq2dva 4672 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ (((𝑥 / (log‘𝑥)) / (π𝑥)) · ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
7343, 72eqtrd 2644 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))))
74 chebbnd1 24961 . . . . 5 (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1)
7513ex 449 . . . . . . 7 (𝜑 → (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+))
7675ssrdv 3574 . . . . . 6 (𝜑 → (2[,)+∞) ⊆ ℝ+)
77 cxploglim 24504 . . . . . . 7 ((1 − 𝐴) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7827, 77syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
7976, 78rlimres2 14140 . . . . 5 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0)
80 o1rlimmul 14197 . . . . 5 (((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8174, 79, 80sylancr 694 . . . 4 (𝜑 → ((𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (log‘𝑥)) / (π𝑥))) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 − 𝐴))))) ⇝𝑟 0)
8273, 81eqbrtrrd 4607 . . 3 (𝜑 → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥𝑐𝐴) / (π𝑥))) ⇝𝑟 0)
8322, 27, 82rlimi 14092 . 2 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)))
8421rpcnd 11750 . . . . . . . . . 10 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℂ)
8584subid1d 10260 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) − 0) = ((𝑥𝑐𝐴) / (π𝑥)))
8685fveq2d 6107 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = (abs‘((𝑥𝑐𝐴) / (π𝑥))))
8721rpred 11748 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑥𝑐𝐴) / (π𝑥)) ∈ ℝ)
8821rpge0d 11752 . . . . . . . . 9 ((𝜑𝑥 ∈ (2[,)+∞)) → 0 ≤ ((𝑥𝑐𝐴) / (π𝑥)))
8987, 88absidd 14009 . . . . . . . 8 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘((𝑥𝑐𝐴) / (π𝑥))) = ((𝑥𝑐𝐴) / (π𝑥)))
9086, 89eqtrd 2644 . . . . . . 7 ((𝜑𝑥 ∈ (2[,)+∞)) → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) = ((𝑥𝑐𝐴) / (π𝑥)))
9190breq1d 4593 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) ↔ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴)))
9214adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 ∈ ℝ+)
9323adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝐴 < 1)
94 simprl 790 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → 𝑥 ∈ (2[,)+∞))
95 simprr 792 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))
9692, 93, 94, 95chtppilimlem1 24962 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (2[,)+∞) ∧ ((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴))) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))
9796expr 641 . . . . . 6 ((𝜑𝑥 ∈ (2[,)+∞)) → (((𝑥𝑐𝐴) / (π𝑥)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9891, 97sylbid 229 . . . . 5 ((𝜑𝑥 ∈ (2[,)+∞)) → ((abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴) → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
9998imim2d 55 . . . 4 ((𝜑𝑥 ∈ (2[,)+∞)) → ((𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → (𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10099ralimdva 2945 . . 3 (𝜑 → (∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
101100reximdv 2999 . 2 (𝜑 → (∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → (abs‘(((𝑥𝑐𝐴) / (π𝑥)) − 0)) < (1 − 𝐴)) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥))))
10283, 101mpd 15 1 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑥 ∈ (2[,)+∞)(𝑧𝑥 → ((𝐴↑2) · ((π𝑥) · (log‘𝑥))) < (θ‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820  +∞cpnf 9950   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  +crp 11708  [,)cico 12048  cexp 12722  abscabs 13822  𝑟 crli 14064  𝑂(1)co1 14065  logclog 24105  𝑐ccxp 24106  θccht 24617  πcppi 24620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-o1 14069  df-lo1 14070  df-sum 14265  df-ef 14637  df-e 14638  df-sin 14639  df-cos 14640  df-pi 14642  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-cht 24623  df-ppi 24626
This theorem is referenced by:  chtppilim  24964
  Copyright terms: Public domain W3C validator