Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmpji Structured version   Visualization version   GIF version

Theorem hmopidmpji 28395
 Description: An idempotent Hermitian operator is a projection operator. Theorem 26.4 of [Halmos] p. 44. (Halmos seems to omit the proof that 𝐻 is a closed subspace, which is not trivial as hmopidmchi 28394 shows.) (Contributed by NM, 22-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 (𝑇𝑇) = 𝑇
Assertion
Ref Expression
hmopidmpji 𝑇 = (proj‘ran 𝑇)

Proof of Theorem hmopidmpji
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . . . 6 𝑇 ∈ HrmOp
2 hmoplin 28185 . . . . . 6 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . . . 5 𝑇 ∈ LinOp
43lnopfi 28212 . . . 4 𝑇: ℋ⟶ ℋ
5 ffn 5958 . . . 4 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
64, 5ax-mp 5 . . 3 𝑇 Fn ℋ
7 hmopidmch.2 . . . . 5 (𝑇𝑇) = 𝑇
81, 7hmopidmchi 28394 . . . 4 ran 𝑇C
98pjfni 27944 . . 3 (proj‘ran 𝑇) Fn ℋ
10 eqfnfv 6219 . . 3 ((𝑇 Fn ℋ ∧ (proj‘ran 𝑇) Fn ℋ) → (𝑇 = (proj‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥)))
116, 9, 10mp2an 704 . 2 (𝑇 = (proj‘ran 𝑇) ↔ ∀𝑥 ∈ ℋ (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥))
12 fnfvelrn 6264 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ran 𝑇)
136, 12mpan 702 . . . 4 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ran 𝑇)
14 id 22 . . . . . 6 (𝑥 ∈ ℋ → 𝑥 ∈ ℋ)
154ffvelrni 6266 . . . . . 6 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
16 hvsubcl 27258 . . . . . 6 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (𝑥 (𝑇𝑥)) ∈ ℋ)
1714, 15, 16syl2anc 691 . . . . 5 (𝑥 ∈ ℋ → (𝑥 (𝑇𝑥)) ∈ ℋ)
18 simpl 472 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
1915adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
204ffvelrni 6266 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
2120adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
22 his2sub 27333 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))))
2318, 19, 21, 22syl3anc 1318 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))))
24 hmop 28165 . . . . . . . . . . . 12 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
251, 24mp3an1 1403 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2620, 25sylan2 490 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
277fveq1i 6104 . . . . . . . . . . . . 13 ((𝑇𝑇)‘𝑦) = (𝑇𝑦)
284, 4hocoi 28007 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ → ((𝑇𝑇)‘𝑦) = (𝑇‘(𝑇𝑦)))
2927, 28syl5reqr 2659 . . . . . . . . . . . 12 (𝑦 ∈ ℋ → (𝑇‘(𝑇𝑦)) = (𝑇𝑦))
3029adantl 481 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑇𝑦)) = (𝑇𝑦))
3130oveq2d 6565 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑇𝑦))) = (𝑥 ·ih (𝑇𝑦)))
3226, 31eqtr3d 2646 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih (𝑇𝑦)))
3332oveq2d 6565 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) − ((𝑇𝑥) ·ih (𝑇𝑦))) = ((𝑥 ·ih (𝑇𝑦)) − (𝑥 ·ih (𝑇𝑦))))
34 hicl 27321 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
3520, 34sylan2 490 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
3635subidd 10259 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) − (𝑥 ·ih (𝑇𝑦))) = 0)
3723, 33, 363eqtrd 2648 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
3837ralrimiva 2949 . . . . . 6 (𝑥 ∈ ℋ → ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
39 oveq2 6557 . . . . . . . . 9 (𝑧 = (𝑇𝑦) → ((𝑥 (𝑇𝑥)) ·ih 𝑧) = ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)))
4039eqeq1d 2612 . . . . . . . 8 (𝑧 = (𝑇𝑦) → (((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0))
4140ralrn 6270 . . . . . . 7 (𝑇 Fn ℋ → (∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0))
426, 41ax-mp 5 . . . . . 6 (∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0 ↔ ∀𝑦 ∈ ℋ ((𝑥 (𝑇𝑥)) ·ih (𝑇𝑦)) = 0)
4338, 42sylibr 223 . . . . 5 (𝑥 ∈ ℋ → ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0)
448chssii 27472 . . . . . 6 ran 𝑇 ⊆ ℋ
45 ocel 27524 . . . . . 6 (ran 𝑇 ⊆ ℋ → ((𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 (𝑇𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0)))
4644, 45ax-mp 5 . . . . 5 ((𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇) ↔ ((𝑥 (𝑇𝑥)) ∈ ℋ ∧ ∀𝑧 ∈ ran 𝑇((𝑥 (𝑇𝑥)) ·ih 𝑧) = 0))
4717, 43, 46sylanbrc 695 . . . 4 (𝑥 ∈ ℋ → (𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇))
488pjcompi 27915 . . . 4 (((𝑇𝑥) ∈ ran 𝑇 ∧ (𝑥 (𝑇𝑥)) ∈ (⊥‘ran 𝑇)) → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = (𝑇𝑥))
4913, 47, 48syl2anc 691 . . 3 (𝑥 ∈ ℋ → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = (𝑇𝑥))
50 hvpncan3 27283 . . . . 5 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) + (𝑥 (𝑇𝑥))) = 𝑥)
5115, 14, 50syl2anc 691 . . . 4 (𝑥 ∈ ℋ → ((𝑇𝑥) + (𝑥 (𝑇𝑥))) = 𝑥)
5251fveq2d 6107 . . 3 (𝑥 ∈ ℋ → ((proj‘ran 𝑇)‘((𝑇𝑥) + (𝑥 (𝑇𝑥)))) = ((proj‘ran 𝑇)‘𝑥))
5349, 52eqtr3d 2646 . 2 (𝑥 ∈ ℋ → (𝑇𝑥) = ((proj‘ran 𝑇)‘𝑥))
5411, 53mprgbir 2911 1 𝑇 = (proj‘ran 𝑇)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  ran crn 5039   ∘ ccom 5042   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815   − cmin 10145   ℋchil 27160   +ℎ cva 27161   ·ih csp 27163   −ℎ cmv 27166  ⊥cort 27171  projℎcpjh 27178  LinOpclo 27188  HrmOpcho 27191 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-dc 9151  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326  ax-hcompl 27443 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-lm 20843  df-t1 20928  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-fcls 21555  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-cfil 22861  df-cau 22862  df-cmet 22863  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-ssp 26961  df-lno 26983  df-nmoo 26984  df-blo 26985  df-0o 26986  df-ph 27052  df-cbn 27103  df-hlo 27126  df-hnorm 27209  df-hba 27210  df-hvsub 27212  df-hlim 27213  df-hcau 27214  df-sh 27448  df-ch 27462  df-oc 27493  df-ch0 27494  df-shs 27551  df-pjh 27638  df-h0op 27991  df-nmop 28082  df-cnop 28083  df-lnop 28084  df-bdop 28085  df-unop 28086  df-hmop 28087 This theorem is referenced by:  hmopidmpj  28397
 Copyright terms: Public domain W3C validator