Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cbn Structured version   Visualization version   GIF version

Definition df-cbn 27103
 Description: Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-cbn CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))}

Detailed syntax breakdown of Definition df-cbn
StepHypRef Expression
1 ccbn 27102 . 2 class CBan
2 vu . . . . . 6 setvar 𝑢
32cv 1474 . . . . 5 class 𝑢
4 cims 26830 . . . . 5 class IndMet
53, 4cfv 5804 . . . 4 class (IndMet‘𝑢)
6 cba 26825 . . . . . 6 class BaseSet
73, 6cfv 5804 . . . . 5 class (BaseSet‘𝑢)
8 cms 22860 . . . . 5 class CMet
97, 8cfv 5804 . . . 4 class (CMet‘(BaseSet‘𝑢))
105, 9wcel 1977 . . 3 wff (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))
11 cnv 26823 . . 3 class NrmCVec
1210, 2, 11crab 2900 . 2 class {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))}
131, 12wceq 1475 1 wff CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))}
 Colors of variables: wff setvar class This definition is referenced by:  iscbn  27104
 Copyright terms: Public domain W3C validator