Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > his2sub | Structured version Visualization version GIF version |
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his2sub | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvsubval 27257 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
2 | 1 | oveq1d 6564 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶)) |
3 | 2 | 3adant3 1074 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶)) |
4 | neg1cn 11001 | . . . . 5 ⊢ -1 ∈ ℂ | |
5 | hvmulcl 27254 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
6 | 4, 5 | mpan 702 | . . . 4 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
7 | ax-his2 27324 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶))) | |
8 | 6, 7 | syl3an2 1352 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶))) |
9 | ax-his3 27325 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))) | |
10 | 4, 9 | mp3an1 1403 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = (-1 · (𝐵 ·ih 𝐶))) |
11 | hicl 27321 | . . . . . . 7 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ) | |
12 | 11 | mulm1d 10361 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 ·ih 𝐶)) = -(𝐵 ·ih 𝐶)) |
13 | 10, 12 | eqtrd 2644 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) ·ih 𝐶) = -(𝐵 ·ih 𝐶)) |
14 | 13 | oveq2d 6565 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
15 | 14 | 3adant1 1072 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + ((-1 ·ℎ 𝐵) ·ih 𝐶)) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
16 | 8, 15 | eqtrd 2644 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶))) |
17 | hicl 27321 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ) | |
18 | 17 | 3adant2 1073 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) ∈ ℂ) |
19 | 11 | 3adant1 1072 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 ·ih 𝐶) ∈ ℂ) |
20 | 18, 19 | negsubd 10277 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐶) + -(𝐵 ·ih 𝐶)) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
21 | 3, 16, 20 | 3eqtrd 2648 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) − (𝐵 ·ih 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 (class class class)co 6549 ℂcc 9813 1c1 9816 + caddc 9818 · cmul 9820 − cmin 10145 -cneg 10146 ℋchil 27160 +ℎ cva 27161 ·ℎ csm 27162 ·ih csp 27163 −ℎ cmv 27166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-hfvmul 27246 ax-hfi 27320 ax-his2 27324 ax-his3 27325 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-sub 10147 df-neg 10148 df-hvsub 27212 |
This theorem is referenced by: his2sub2 27334 hi2eq 27346 pjhthlem1 27634 h1de2i 27796 pjdifnormii 27926 lnopeqi 28251 riesz3i 28305 leop2 28367 hmopidmpji 28395 pjssposi 28415 pjclem4 28442 pj3si 28450 |
Copyright terms: Public domain | W3C validator |