Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubval Structured version   Visualization version   GIF version

Theorem hvsubval 27257
 Description: Value of vector subtraction. (Contributed by NM, 5-Sep-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))

Proof of Theorem hvsubval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . 2 (𝑥 = 𝐴 → (𝑥 + (-1 · 𝑦)) = (𝐴 + (-1 · 𝑦)))
2 oveq2 6557 . . 3 (𝑦 = 𝐵 → (-1 · 𝑦) = (-1 · 𝐵))
32oveq2d 6565 . 2 (𝑦 = 𝐵 → (𝐴 + (-1 · 𝑦)) = (𝐴 + (-1 · 𝐵)))
4 df-hvsub 27212 . 2 = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
5 ovex 6577 . 2 (𝐴 + (-1 · 𝐵)) ∈ V
61, 3, 4, 5ovmpt2 6694 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  (class class class)co 6549  1c1 9816  -cneg 10146   ℋchil 27160   +ℎ cva 27161   ·ℎ csm 27162   −ℎ cmv 27166 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-hvsub 27212 This theorem is referenced by:  hvsubcl  27258  hvsubvali  27261  hvsubid  27267  hvnegid  27268  hv2neg  27269  hvaddsubval  27274  hvsub4  27278  hvaddsub12  27279  hvpncan  27280  hvaddsubass  27282  hvsubass  27285  hvsubdistr1  27290  hvsubdistr2  27291  hvsubcan  27315  hvsub0  27317  his2sub  27333  hhph  27419  shsubcl  27461  shsel3  27558  honegsubi  28039  lnopsubi  28217  lnfnsubi  28289  superpos  28597  cdj1i  28676
 Copyright terms: Public domain W3C validator