HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthlem1 Structured version   Visualization version   GIF version

Theorem pjhthlem1 27634
Description: Lemma for pjhth 27636. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjhth.1 𝐻C
pjhth.2 (𝜑𝐴 ∈ ℋ)
pjhth.3 (𝜑𝐵𝐻)
pjhth.4 (𝜑𝐶𝐻)
pjhth.5 (𝜑 → ∀𝑥𝐻 (norm‘(𝐴 𝐵)) ≤ (norm‘(𝐴 𝑥)))
pjhth.6 𝑇 = (((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1))
Assertion
Ref Expression
pjhthlem1 (𝜑 → ((𝐴 𝐵) ·ih 𝐶) = 0)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐻   𝑥,𝑇
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem pjhthlem1
StepHypRef Expression
1 pjhth.2 . . . 4 (𝜑𝐴 ∈ ℋ)
2 pjhth.3 . . . . 5 (𝜑𝐵𝐻)
3 pjhth.1 . . . . . 6 𝐻C
43cheli 27473 . . . . 5 (𝐵𝐻𝐵 ∈ ℋ)
52, 4syl 17 . . . 4 (𝜑𝐵 ∈ ℋ)
6 hvsubcl 27258 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) ∈ ℋ)
71, 5, 6syl2anc 691 . . 3 (𝜑 → (𝐴 𝐵) ∈ ℋ)
8 pjhth.4 . . . 4 (𝜑𝐶𝐻)
93cheli 27473 . . . 4 (𝐶𝐻𝐶 ∈ ℋ)
108, 9syl 17 . . 3 (𝜑𝐶 ∈ ℋ)
11 hicl 27321 . . 3 (((𝐴 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) ·ih 𝐶) ∈ ℂ)
127, 10, 11syl2anc 691 . 2 (𝜑 → ((𝐴 𝐵) ·ih 𝐶) ∈ ℂ)
1312abscld 14023 . . . 4 (𝜑 → (abs‘((𝐴 𝐵) ·ih 𝐶)) ∈ ℝ)
1413recnd 9947 . . 3 (𝜑 → (abs‘((𝐴 𝐵) ·ih 𝐶)) ∈ ℂ)
1513resqcld 12897 . . . . . . 7 (𝜑 → ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ∈ ℝ)
1615renegcld 10336 . . . . . 6 (𝜑 → -((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ∈ ℝ)
17 hiidrcl 27336 . . . . . . . 8 (𝐶 ∈ ℋ → (𝐶 ·ih 𝐶) ∈ ℝ)
1810, 17syl 17 . . . . . . 7 (𝜑 → (𝐶 ·ih 𝐶) ∈ ℝ)
19 2re 10967 . . . . . . 7 2 ∈ ℝ
20 readdcl 9898 . . . . . . 7 (((𝐶 ·ih 𝐶) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝐶 ·ih 𝐶) + 2) ∈ ℝ)
2118, 19, 20sylancl 693 . . . . . 6 (𝜑 → ((𝐶 ·ih 𝐶) + 2) ∈ ℝ)
22 0red 9920 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
23 peano2re 10088 . . . . . . . 8 ((𝐶 ·ih 𝐶) ∈ ℝ → ((𝐶 ·ih 𝐶) + 1) ∈ ℝ)
2418, 23syl 17 . . . . . . 7 (𝜑 → ((𝐶 ·ih 𝐶) + 1) ∈ ℝ)
25 hiidge0 27339 . . . . . . . . 9 (𝐶 ∈ ℋ → 0 ≤ (𝐶 ·ih 𝐶))
2610, 25syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝐶 ·ih 𝐶))
2718ltp1d 10833 . . . . . . . 8 (𝜑 → (𝐶 ·ih 𝐶) < ((𝐶 ·ih 𝐶) + 1))
2822, 18, 24, 26, 27lelttrd 10074 . . . . . . 7 (𝜑 → 0 < ((𝐶 ·ih 𝐶) + 1))
2924ltp1d 10833 . . . . . . . 8 (𝜑 → ((𝐶 ·ih 𝐶) + 1) < (((𝐶 ·ih 𝐶) + 1) + 1))
3018recnd 9947 . . . . . . . . . 10 (𝜑 → (𝐶 ·ih 𝐶) ∈ ℂ)
31 ax-1cn 9873 . . . . . . . . . . 11 1 ∈ ℂ
32 addass 9902 . . . . . . . . . . 11 (((𝐶 ·ih 𝐶) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐶 ·ih 𝐶) + 1) + 1) = ((𝐶 ·ih 𝐶) + (1 + 1)))
3331, 31, 32mp3an23 1408 . . . . . . . . . 10 ((𝐶 ·ih 𝐶) ∈ ℂ → (((𝐶 ·ih 𝐶) + 1) + 1) = ((𝐶 ·ih 𝐶) + (1 + 1)))
3430, 33syl 17 . . . . . . . . 9 (𝜑 → (((𝐶 ·ih 𝐶) + 1) + 1) = ((𝐶 ·ih 𝐶) + (1 + 1)))
35 df-2 10956 . . . . . . . . . 10 2 = (1 + 1)
3635oveq2i 6560 . . . . . . . . 9 ((𝐶 ·ih 𝐶) + 2) = ((𝐶 ·ih 𝐶) + (1 + 1))
3734, 36syl6reqr 2663 . . . . . . . 8 (𝜑 → ((𝐶 ·ih 𝐶) + 2) = (((𝐶 ·ih 𝐶) + 1) + 1))
3829, 37breqtrrd 4611 . . . . . . 7 (𝜑 → ((𝐶 ·ih 𝐶) + 1) < ((𝐶 ·ih 𝐶) + 2))
3922, 24, 21, 28, 38lttrd 10077 . . . . . 6 (𝜑 → 0 < ((𝐶 ·ih 𝐶) + 2))
403chshii 27468 . . . . . . . . . . . . . . 15 𝐻S
4140a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐻S )
42 pjhth.6 . . . . . . . . . . . . . . . 16 𝑇 = (((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1))
4324recnd 9947 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐶 ·ih 𝐶) + 1) ∈ ℂ)
4418, 26ge0p1rpd 11778 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐶 ·ih 𝐶) + 1) ∈ ℝ+)
4544rpne0d 11753 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐶 ·ih 𝐶) + 1) ≠ 0)
4612, 43, 45divcld 10680 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1)) ∈ ℂ)
4742, 46syl5eqel 2692 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℂ)
48 shmulcl 27459 . . . . . . . . . . . . . . 15 ((𝐻S𝑇 ∈ ℂ ∧ 𝐶𝐻) → (𝑇 · 𝐶) ∈ 𝐻)
4941, 47, 8, 48syl3anc 1318 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 · 𝐶) ∈ 𝐻)
50 shaddcl 27458 . . . . . . . . . . . . . 14 ((𝐻S𝐵𝐻 ∧ (𝑇 · 𝐶) ∈ 𝐻) → (𝐵 + (𝑇 · 𝐶)) ∈ 𝐻)
5141, 2, 49, 50syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → (𝐵 + (𝑇 · 𝐶)) ∈ 𝐻)
52 pjhth.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐻 (norm‘(𝐴 𝐵)) ≤ (norm‘(𝐴 𝑥)))
53 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑥 = (𝐵 + (𝑇 · 𝐶)) → (𝐴 𝑥) = (𝐴 (𝐵 + (𝑇 · 𝐶))))
5453fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑥 = (𝐵 + (𝑇 · 𝐶)) → (norm‘(𝐴 𝑥)) = (norm‘(𝐴 (𝐵 + (𝑇 · 𝐶)))))
5554breq2d 4595 . . . . . . . . . . . . . 14 (𝑥 = (𝐵 + (𝑇 · 𝐶)) → ((norm‘(𝐴 𝐵)) ≤ (norm‘(𝐴 𝑥)) ↔ (norm‘(𝐴 𝐵)) ≤ (norm‘(𝐴 (𝐵 + (𝑇 · 𝐶))))))
5655rspcv 3278 . . . . . . . . . . . . 13 ((𝐵 + (𝑇 · 𝐶)) ∈ 𝐻 → (∀𝑥𝐻 (norm‘(𝐴 𝐵)) ≤ (norm‘(𝐴 𝑥)) → (norm‘(𝐴 𝐵)) ≤ (norm‘(𝐴 (𝐵 + (𝑇 · 𝐶))))))
5751, 52, 56sylc 63 . . . . . . . . . . . 12 (𝜑 → (norm‘(𝐴 𝐵)) ≤ (norm‘(𝐴 (𝐵 + (𝑇 · 𝐶)))))
583cheli 27473 . . . . . . . . . . . . . . 15 ((𝑇 · 𝐶) ∈ 𝐻 → (𝑇 · 𝐶) ∈ ℋ)
5949, 58syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 · 𝐶) ∈ ℋ)
60 hvsubass 27285 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (𝑇 · 𝐶) ∈ ℋ) → ((𝐴 𝐵) − (𝑇 · 𝐶)) = (𝐴 (𝐵 + (𝑇 · 𝐶))))
611, 5, 59, 60syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 𝐵) − (𝑇 · 𝐶)) = (𝐴 (𝐵 + (𝑇 · 𝐶))))
6261fveq2d 6107 . . . . . . . . . . . 12 (𝜑 → (norm‘((𝐴 𝐵) − (𝑇 · 𝐶))) = (norm‘(𝐴 (𝐵 + (𝑇 · 𝐶)))))
6357, 62breqtrrd 4611 . . . . . . . . . . 11 (𝜑 → (norm‘(𝐴 𝐵)) ≤ (norm‘((𝐴 𝐵) − (𝑇 · 𝐶))))
64 normcl 27366 . . . . . . . . . . . . 13 ((𝐴 𝐵) ∈ ℋ → (norm‘(𝐴 𝐵)) ∈ ℝ)
657, 64syl 17 . . . . . . . . . . . 12 (𝜑 → (norm‘(𝐴 𝐵)) ∈ ℝ)
66 hvsubcl 27258 . . . . . . . . . . . . . 14 (((𝐴 𝐵) ∈ ℋ ∧ (𝑇 · 𝐶) ∈ ℋ) → ((𝐴 𝐵) − (𝑇 · 𝐶)) ∈ ℋ)
677, 59, 66syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 𝐵) − (𝑇 · 𝐶)) ∈ ℋ)
68 normcl 27366 . . . . . . . . . . . . 13 (((𝐴 𝐵) − (𝑇 · 𝐶)) ∈ ℋ → (norm‘((𝐴 𝐵) − (𝑇 · 𝐶))) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . . . 12 (𝜑 → (norm‘((𝐴 𝐵) − (𝑇 · 𝐶))) ∈ ℝ)
70 normge0 27367 . . . . . . . . . . . . 13 ((𝐴 𝐵) ∈ ℋ → 0 ≤ (norm‘(𝐴 𝐵)))
717, 70syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (norm‘(𝐴 𝐵)))
7222, 65, 69, 71, 63letrd 10073 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (norm‘((𝐴 𝐵) − (𝑇 · 𝐶))))
7365, 69, 71, 72le2sqd 12906 . . . . . . . . . . 11 (𝜑 → ((norm‘(𝐴 𝐵)) ≤ (norm‘((𝐴 𝐵) − (𝑇 · 𝐶))) ↔ ((norm‘(𝐴 𝐵))↑2) ≤ ((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2)))
7463, 73mpbid 221 . . . . . . . . . 10 (𝜑 → ((norm‘(𝐴 𝐵))↑2) ≤ ((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2))
7569resqcld 12897 . . . . . . . . . . 11 (𝜑 → ((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) ∈ ℝ)
7665resqcld 12897 . . . . . . . . . . 11 (𝜑 → ((norm‘(𝐴 𝐵))↑2) ∈ ℝ)
7775, 76subge0d 10496 . . . . . . . . . 10 (𝜑 → (0 ≤ (((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) − ((norm‘(𝐴 𝐵))↑2)) ↔ ((norm‘(𝐴 𝐵))↑2) ≤ ((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2)))
7874, 77mpbird 246 . . . . . . . . 9 (𝜑 → 0 ≤ (((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) − ((norm‘(𝐴 𝐵))↑2)))
79 2z 11286 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
80 rpexpcl 12741 . . . . . . . . . . . . . . . 16 ((((𝐶 ·ih 𝐶) + 1) ∈ ℝ+ ∧ 2 ∈ ℤ) → (((𝐶 ·ih 𝐶) + 1)↑2) ∈ ℝ+)
8144, 79, 80sylancl 693 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐶 ·ih 𝐶) + 1)↑2) ∈ ℝ+)
8215, 81rerpdivcld 11779 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) ∈ ℝ)
8382, 21remulcld 9949 . . . . . . . . . . . . 13 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)) ∈ ℝ)
8483recnd 9947 . . . . . . . . . . . 12 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)) ∈ ℂ)
8584negcld 10258 . . . . . . . . . . 11 (𝜑 → -((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)) ∈ ℂ)
86 hicl 27321 . . . . . . . . . . . 12 (((𝐴 𝐵) ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → ((𝐴 𝐵) ·ih (𝐴 𝐵)) ∈ ℂ)
877, 7, 86syl2anc 691 . . . . . . . . . . 11 (𝜑 → ((𝐴 𝐵) ·ih (𝐴 𝐵)) ∈ ℂ)
8885, 87pncand 10272 . . . . . . . . . 10 (𝜑 → ((-((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)) + ((𝐴 𝐵) ·ih (𝐴 𝐵))) − ((𝐴 𝐵) ·ih (𝐴 𝐵))) = -((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)))
89 normsq 27375 . . . . . . . . . . . . . 14 (((𝐴 𝐵) − (𝑇 · 𝐶)) ∈ ℋ → ((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) = (((𝐴 𝐵) − (𝑇 · 𝐶)) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))))
9067, 89syl 17 . . . . . . . . . . . . 13 (𝜑 → ((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) = (((𝐴 𝐵) − (𝑇 · 𝐶)) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))))
91 his2sub 27333 . . . . . . . . . . . . . 14 (((𝐴 𝐵) ∈ ℋ ∧ (𝑇 · 𝐶) ∈ ℋ ∧ ((𝐴 𝐵) − (𝑇 · 𝐶)) ∈ ℋ) → (((𝐴 𝐵) − (𝑇 · 𝐶)) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) = (((𝐴 𝐵) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) − ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶)))))
927, 59, 67, 91syl3anc 1318 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 𝐵) − (𝑇 · 𝐶)) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) = (((𝐴 𝐵) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) − ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶)))))
93 his2sub2 27334 . . . . . . . . . . . . . . . 16 (((𝐴 𝐵) ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ ∧ (𝑇 · 𝐶) ∈ ℋ) → ((𝐴 𝐵) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) − ((𝐴 𝐵) ·ih (𝑇 · 𝐶))))
947, 7, 59, 93syl3anc 1318 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 𝐵) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) − ((𝐴 𝐵) ·ih (𝑇 · 𝐶))))
9594oveq1d 6564 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 𝐵) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) − ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶)))) = ((((𝐴 𝐵) ·ih (𝐴 𝐵)) − ((𝐴 𝐵) ·ih (𝑇 · 𝐶))) − ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶)))))
96 hicl 27321 . . . . . . . . . . . . . . . 16 (((𝐴 𝐵) ∈ ℋ ∧ (𝑇 · 𝐶) ∈ ℋ) → ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) ∈ ℂ)
977, 59, 96syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) ∈ ℂ)
98 his2sub2 27334 . . . . . . . . . . . . . . . . 17 (((𝑇 · 𝐶) ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ ∧ (𝑇 · 𝐶) ∈ ℋ) → ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) = (((𝑇 · 𝐶) ·ih (𝐴 𝐵)) − ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶))))
9959, 7, 59, 98syl3anc 1318 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) = (((𝑇 · 𝐶) ·ih (𝐴 𝐵)) − ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶))))
100 hicl 27321 . . . . . . . . . . . . . . . . . 18 (((𝑇 · 𝐶) ∈ ℋ ∧ (𝐴 𝐵) ∈ ℋ) → ((𝑇 · 𝐶) ·ih (𝐴 𝐵)) ∈ ℂ)
10159, 7, 100syl2anc 691 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇 · 𝐶) ·ih (𝐴 𝐵)) ∈ ℂ)
102 hicl 27321 . . . . . . . . . . . . . . . . . 18 (((𝑇 · 𝐶) ∈ ℋ ∧ (𝑇 · 𝐶) ∈ ℋ) → ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶)) ∈ ℂ)
10359, 59, 102syl2anc 691 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶)) ∈ ℂ)
104101, 103subcld 10271 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝑇 · 𝐶) ·ih (𝐴 𝐵)) − ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶))) ∈ ℂ)
10599, 104eqeltrd 2688 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) ∈ ℂ)
10687, 97, 105subsub4d 10302 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴 𝐵) ·ih (𝐴 𝐵)) − ((𝐴 𝐵) ·ih (𝑇 · 𝐶))) − ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶)))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) − (((𝐴 𝐵) ·ih (𝑇 · 𝐶)) + ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))))))
10782recnd 9947 . . . . . . . . . . . . . . . . 17 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) ∈ ℂ)
10831a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
109107, 43, 108adddid 9943 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (((𝐶 ·ih 𝐶) + 1) + 1)) = (((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)) + ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · 1)))
11037oveq2d 6565 . . . . . . . . . . . . . . . 16 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (((𝐶 ·ih 𝐶) + 1) + 1)))
111 his5 27327 . . . . . . . . . . . . . . . . . . . 20 ((𝑇 ∈ ℂ ∧ (𝐴 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) = ((∗‘𝑇) · ((𝐴 𝐵) ·ih 𝐶)))
11247, 7, 10, 111syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) = ((∗‘𝑇) · ((𝐴 𝐵) ·ih 𝐶)))
11347cjcld 13784 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗‘𝑇) ∈ ℂ)
114113, 12mulcomd 9940 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((∗‘𝑇) · ((𝐴 𝐵) ·ih 𝐶)) = (((𝐴 𝐵) ·ih 𝐶) · (∗‘𝑇)))
11512cjcld 13784 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘((𝐴 𝐵) ·ih 𝐶)) ∈ ℂ)
11612, 115, 43, 45divassd 10715 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((((𝐴 𝐵) ·ih 𝐶) · (∗‘((𝐴 𝐵) ·ih 𝐶))) / ((𝐶 ·ih 𝐶) + 1)) = (((𝐴 𝐵) ·ih 𝐶) · ((∗‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1))))
11712absvalsqd 14029 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) = (((𝐴 𝐵) ·ih 𝐶) · (∗‘((𝐴 𝐵) ·ih 𝐶))))
118117oveq1d 6564 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / ((𝐶 ·ih 𝐶) + 1)) = ((((𝐴 𝐵) ·ih 𝐶) · (∗‘((𝐴 𝐵) ·ih 𝐶))) / ((𝐶 ·ih 𝐶) + 1)))
11942fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘𝑇) = (∗‘(((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1)))
12012, 43, 45cjdivd 13811 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (∗‘(((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1))) = ((∗‘((𝐴 𝐵) ·ih 𝐶)) / (∗‘((𝐶 ·ih 𝐶) + 1))))
12124cjred 13814 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∗‘((𝐶 ·ih 𝐶) + 1)) = ((𝐶 ·ih 𝐶) + 1))
122121oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((∗‘((𝐴 𝐵) ·ih 𝐶)) / (∗‘((𝐶 ·ih 𝐶) + 1))) = ((∗‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1)))
123120, 122eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (∗‘(((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1))) = ((∗‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1)))
124119, 123syl5eq 2656 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗‘𝑇) = ((∗‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1)))
125124oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴 𝐵) ·ih 𝐶) · (∗‘𝑇)) = (((𝐴 𝐵) ·ih 𝐶) · ((∗‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1))))
126116, 118, 1253eqtr4rd 2655 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐴 𝐵) ·ih 𝐶) · (∗‘𝑇)) = (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / ((𝐶 ·ih 𝐶) + 1)))
127112, 114, 1263eqtrd 2648 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) = (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / ((𝐶 ·ih 𝐶) + 1)))
12815recnd 9947 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ∈ ℂ)
129128, 43mulcomd 9940 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · ((𝐶 ·ih 𝐶) + 1)) = (((𝐶 ·ih 𝐶) + 1) · ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2)))
13043sqvald 12867 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐶 ·ih 𝐶) + 1)↑2) = (((𝐶 ·ih 𝐶) + 1) · ((𝐶 ·ih 𝐶) + 1)))
131129, 130oveq12d 6567 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · ((𝐶 ·ih 𝐶) + 1)) / (((𝐶 ·ih 𝐶) + 1)↑2)) = ((((𝐶 ·ih 𝐶) + 1) · ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2)) / (((𝐶 ·ih 𝐶) + 1) · ((𝐶 ·ih 𝐶) + 1))))
132128, 43, 43, 45, 45divcan5d 10706 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((𝐶 ·ih 𝐶) + 1) · ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2)) / (((𝐶 ·ih 𝐶) + 1) · ((𝐶 ·ih 𝐶) + 1))) = (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / ((𝐶 ·ih 𝐶) + 1)))
133131, 132eqtr2d 2645 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / ((𝐶 ·ih 𝐶) + 1)) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · ((𝐶 ·ih 𝐶) + 1)) / (((𝐶 ·ih 𝐶) + 1)↑2)))
13424resqcld 12897 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐶 ·ih 𝐶) + 1)↑2) ∈ ℝ)
135134recnd 9947 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐶 ·ih 𝐶) + 1)↑2) ∈ ℂ)
13681rpne0d 11753 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐶 ·ih 𝐶) + 1)↑2) ≠ 0)
137128, 43, 135, 136div23d 10717 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · ((𝐶 ·ih 𝐶) + 1)) / (((𝐶 ·ih 𝐶) + 1)↑2)) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)))
138127, 133, 1373eqtrd 2648 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)))
13982, 24remulcld 9949 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)) ∈ ℝ)
140138, 139eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) ∈ ℝ)
141 hire 27335 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 𝐵) ∈ ℋ ∧ (𝑇 · 𝐶) ∈ ℋ) → (((𝐴 𝐵) ·ih (𝑇 · 𝐶)) ∈ ℝ ↔ ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) = ((𝑇 · 𝐶) ·ih (𝐴 𝐵))))
1427, 59, 141syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((𝐴 𝐵) ·ih (𝑇 · 𝐶)) ∈ ℝ ↔ ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) = ((𝑇 · 𝐶) ·ih (𝐴 𝐵))))
143140, 142mpbid 221 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐴 𝐵) ·ih (𝑇 · 𝐶)) = ((𝑇 · 𝐶) ·ih (𝐴 𝐵)))
144143, 138eqtr3d 2646 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇 · 𝐶) ·ih (𝐴 𝐵)) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)))
145 his35 27329 . . . . . . . . . . . . . . . . . . . . 21 (((𝑇 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶)) = ((𝑇 · (∗‘𝑇)) · (𝐶 ·ih 𝐶)))
14647, 47, 10, 10, 145syl22anc 1319 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶)) = ((𝑇 · (∗‘𝑇)) · (𝐶 ·ih 𝐶)))
14742fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . . . 24 (abs‘𝑇) = (abs‘(((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1)))
14812, 43, 45absdivd 14042 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (abs‘(((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1))) = ((abs‘((𝐴 𝐵) ·ih 𝐶)) / (abs‘((𝐶 ·ih 𝐶) + 1))))
14944rpge0d 11752 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 0 ≤ ((𝐶 ·ih 𝐶) + 1))
15024, 149absidd 14009 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (abs‘((𝐶 ·ih 𝐶) + 1)) = ((𝐶 ·ih 𝐶) + 1))
151150oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((abs‘((𝐴 𝐵) ·ih 𝐶)) / (abs‘((𝐶 ·ih 𝐶) + 1))) = ((abs‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1)))
152148, 151eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (abs‘(((𝐴 𝐵) ·ih 𝐶) / ((𝐶 ·ih 𝐶) + 1))) = ((abs‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1)))
153147, 152syl5eq 2656 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (abs‘𝑇) = ((abs‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1)))
154153oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (((abs‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1))↑2))
15547absvalsqd 14029 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((abs‘𝑇)↑2) = (𝑇 · (∗‘𝑇)))
15614, 43, 45sqdivd 12883 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶)) / ((𝐶 ·ih 𝐶) + 1))↑2) = (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)))
157154, 155, 1563eqtr3d 2652 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑇 · (∗‘𝑇)) = (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)))
158157oveq1d 6564 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑇 · (∗‘𝑇)) · (𝐶 ·ih 𝐶)) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (𝐶 ·ih 𝐶)))
159146, 158eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶)) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (𝐶 ·ih 𝐶)))
160144, 159oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑇 · 𝐶) ·ih (𝐴 𝐵)) − ((𝑇 · 𝐶) ·ih (𝑇 · 𝐶))) = (((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)) − ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (𝐶 ·ih 𝐶))))
161 pncan2 10167 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ·ih 𝐶) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐶 ·ih 𝐶) + 1) − (𝐶 ·ih 𝐶)) = 1)
16230, 31, 161sylancl 693 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐶 ·ih 𝐶) + 1) − (𝐶 ·ih 𝐶)) = 1)
163162oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (((𝐶 ·ih 𝐶) + 1) − (𝐶 ·ih 𝐶))) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · 1))
164107, 43, 30subdid 10365 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (((𝐶 ·ih 𝐶) + 1) − (𝐶 ·ih 𝐶))) = (((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)) − ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (𝐶 ·ih 𝐶))))
165163, 164eqtr3d 2646 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · 1) = (((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)) − ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · (𝐶 ·ih 𝐶))))
166160, 99, 1653eqtr4d 2654 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · 1))
167138, 166oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴 𝐵) ·ih (𝑇 · 𝐶)) + ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶)))) = (((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 1)) + ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · 1)))
168109, 110, 1673eqtr4rd 2655 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴 𝐵) ·ih (𝑇 · 𝐶)) + ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶)))) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)))
169168oveq2d 6565 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 𝐵) ·ih (𝐴 𝐵)) − (((𝐴 𝐵) ·ih (𝑇 · 𝐶)) + ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) − ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2))))
17095, 106, 1693eqtrd 2648 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 𝐵) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶))) − ((𝑇 · 𝐶) ·ih ((𝐴 𝐵) − (𝑇 · 𝐶)))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) − ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2))))
17190, 92, 1703eqtrd 2648 . . . . . . . . . . . 12 (𝜑 → ((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) − ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2))))
17287, 84negsubd 10277 . . . . . . . . . . . 12 (𝜑 → (((𝐴 𝐵) ·ih (𝐴 𝐵)) + -((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2))) = (((𝐴 𝐵) ·ih (𝐴 𝐵)) − ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2))))
17387, 85addcomd 10117 . . . . . . . . . . . 12 (𝜑 → (((𝐴 𝐵) ·ih (𝐴 𝐵)) + -((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2))) = (-((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)) + ((𝐴 𝐵) ·ih (𝐴 𝐵))))
174171, 172, 1733eqtr2d 2650 . . . . . . . . . . 11 (𝜑 → ((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) = (-((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)) + ((𝐴 𝐵) ·ih (𝐴 𝐵))))
175 normsq 27375 . . . . . . . . . . . 12 ((𝐴 𝐵) ∈ ℋ → ((norm‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) ·ih (𝐴 𝐵)))
1767, 175syl 17 . . . . . . . . . . 11 (𝜑 → ((norm‘(𝐴 𝐵))↑2) = ((𝐴 𝐵) ·ih (𝐴 𝐵)))
177174, 176oveq12d 6567 . . . . . . . . . 10 (𝜑 → (((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) − ((norm‘(𝐴 𝐵))↑2)) = ((-((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)) + ((𝐴 𝐵) ·ih (𝐴 𝐵))) − ((𝐴 𝐵) ·ih (𝐴 𝐵))))
17821renegcld 10336 . . . . . . . . . . . . 13 (𝜑 → -((𝐶 ·ih 𝐶) + 2) ∈ ℝ)
179178recnd 9947 . . . . . . . . . . . 12 (𝜑 → -((𝐶 ·ih 𝐶) + 2) ∈ ℂ)
180128, 179, 135, 136div23d 10717 . . . . . . . . . . 11 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)) / (((𝐶 ·ih 𝐶) + 1)↑2)) = ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · -((𝐶 ·ih 𝐶) + 2)))
18121recnd 9947 . . . . . . . . . . . 12 (𝜑 → ((𝐶 ·ih 𝐶) + 2) ∈ ℂ)
182107, 181mulneg2d 10363 . . . . . . . . . . 11 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · -((𝐶 ·ih 𝐶) + 2)) = -((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)))
183180, 182eqtrd 2644 . . . . . . . . . 10 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)) / (((𝐶 ·ih 𝐶) + 1)↑2)) = -((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) / (((𝐶 ·ih 𝐶) + 1)↑2)) · ((𝐶 ·ih 𝐶) + 2)))
18488, 177, 1833eqtr4rd 2655 . . . . . . . . 9 (𝜑 → ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)) / (((𝐶 ·ih 𝐶) + 1)↑2)) = (((norm‘((𝐴 𝐵) − (𝑇 · 𝐶)))↑2) − ((norm‘(𝐴 𝐵))↑2)))
18578, 184breqtrrd 4611 . . . . . . . 8 (𝜑 → 0 ≤ ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)) / (((𝐶 ·ih 𝐶) + 1)↑2)))
18615, 178remulcld 9949 . . . . . . . . 9 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)) ∈ ℝ)
187186, 81ge0divd 11786 . . . . . . . 8 (𝜑 → (0 ≤ (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)) ↔ 0 ≤ ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)) / (((𝐶 ·ih 𝐶) + 1)↑2))))
188185, 187mpbird 246 . . . . . . 7 (𝜑 → 0 ≤ (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)))
189 mulneg12 10347 . . . . . . . 8 ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ∈ ℂ ∧ ((𝐶 ·ih 𝐶) + 2) ∈ ℂ) → (-((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · ((𝐶 ·ih 𝐶) + 2)) = (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)))
190128, 181, 189syl2anc 691 . . . . . . 7 (𝜑 → (-((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · ((𝐶 ·ih 𝐶) + 2)) = (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · -((𝐶 ·ih 𝐶) + 2)))
191188, 190breqtrrd 4611 . . . . . 6 (𝜑 → 0 ≤ (-((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · ((𝐶 ·ih 𝐶) + 2)))
192 prodge02 10750 . . . . . 6 (((-((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ∈ ℝ ∧ ((𝐶 ·ih 𝐶) + 2) ∈ ℝ) ∧ (0 < ((𝐶 ·ih 𝐶) + 2) ∧ 0 ≤ (-((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) · ((𝐶 ·ih 𝐶) + 2)))) → 0 ≤ -((abs‘((𝐴 𝐵) ·ih 𝐶))↑2))
19316, 21, 39, 191, 192syl22anc 1319 . . . . 5 (𝜑 → 0 ≤ -((abs‘((𝐴 𝐵) ·ih 𝐶))↑2))
19415le0neg1d 10478 . . . . 5 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ≤ 0 ↔ 0 ≤ -((abs‘((𝐴 𝐵) ·ih 𝐶))↑2)))
195193, 194mpbird 246 . . . 4 (𝜑 → ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ≤ 0)
19613sqge0d 12898 . . . 4 (𝜑 → 0 ≤ ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2))
197 0re 9919 . . . . 5 0 ∈ ℝ
198 letri3 10002 . . . . 5 ((((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) = 0 ↔ (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ≤ 0 ∧ 0 ≤ ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2))))
19915, 197, 198sylancl 693 . . . 4 (𝜑 → (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) = 0 ↔ (((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) ≤ 0 ∧ 0 ≤ ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2))))
200195, 196, 199mpbir2and 959 . . 3 (𝜑 → ((abs‘((𝐴 𝐵) ·ih 𝐶))↑2) = 0)
20114, 200sqeq0d 12869 . 2 (𝜑 → (abs‘((𝐴 𝐵) ·ih 𝐶)) = 0)
20212, 201abs00d 14033 1 (𝜑 → ((𝐴 𝐵) ·ih 𝐶) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  cz 11254  +crp 11708  cexp 12722  ccj 13684  abscabs 13822  chil 27160   + cva 27161   · csm 27162   ·ih csp 27163  normcno 27164   cmv 27166   S csh 27169   C cch 27170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-hilex 27240  ax-hfvadd 27241  ax-hvass 27243  ax-hv0cl 27244  ax-hfvmul 27246  ax-hvdistr1 27249  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-hnorm 27209  df-hvsub 27212  df-sh 27448  df-ch 27462
This theorem is referenced by:  pjhthlem2  27635
  Copyright terms: Public domain W3C validator