Detailed syntax breakdown of Definition df-lnop
Step | Hyp | Ref
| Expression |
1 | | clo 27188 |
. 2
class
LinOp |
2 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
3 | 2 | cv 1474 |
. . . . . . . . . 10
class 𝑥 |
4 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
5 | 4 | cv 1474 |
. . . . . . . . . 10
class 𝑦 |
6 | | csm 27162 |
. . . . . . . . . 10
class
·ℎ |
7 | 3, 5, 6 | co 6549 |
. . . . . . . . 9
class (𝑥
·ℎ 𝑦) |
8 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
9 | 8 | cv 1474 |
. . . . . . . . 9
class 𝑧 |
10 | | cva 27161 |
. . . . . . . . 9
class
+ℎ |
11 | 7, 9, 10 | co 6549 |
. . . . . . . 8
class ((𝑥
·ℎ 𝑦) +ℎ 𝑧) |
12 | | vt |
. . . . . . . . 9
setvar 𝑡 |
13 | 12 | cv 1474 |
. . . . . . . 8
class 𝑡 |
14 | 11, 13 | cfv 5804 |
. . . . . . 7
class (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) |
15 | 5, 13 | cfv 5804 |
. . . . . . . . 9
class (𝑡‘𝑦) |
16 | 3, 15, 6 | co 6549 |
. . . . . . . 8
class (𝑥
·ℎ (𝑡‘𝑦)) |
17 | 9, 13 | cfv 5804 |
. . . . . . . 8
class (𝑡‘𝑧) |
18 | 16, 17, 10 | co 6549 |
. . . . . . 7
class ((𝑥
·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧)) |
19 | 14, 18 | wceq 1475 |
. . . . . 6
wff (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧)) |
20 | | chil 27160 |
. . . . . 6
class
ℋ |
21 | 19, 8, 20 | wral 2896 |
. . . . 5
wff
∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧)) |
22 | 21, 4, 20 | wral 2896 |
. . . 4
wff
∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧)) |
23 | | cc 9813 |
. . . 4
class
ℂ |
24 | 22, 2, 23 | wral 2896 |
. . 3
wff
∀𝑥 ∈
ℂ ∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧)) |
25 | | cmap 7744 |
. . . 4
class
↑𝑚 |
26 | 20, 20, 25 | co 6549 |
. . 3
class ( ℋ
↑𝑚 ℋ) |
27 | 24, 12, 26 | crab 2900 |
. 2
class {𝑡 ∈ ( ℋ
↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧))} |
28 | 1, 27 | wceq 1475 |
1
wff LinOp =
{𝑡 ∈ ( ℋ
↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧))} |