Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-hvdistr1 Structured version   Visualization version   GIF version

Axiom ax-hvdistr1 27249
 Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-hvdistr1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Detailed syntax breakdown of Axiom ax-hvdistr1
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 9813 . . . 4 class
31, 2wcel 1977 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
5 chil 27160 . . . 4 class
64, 5wcel 1977 . . 3 wff 𝐵 ∈ ℋ
7 cC . . . 4 class 𝐶
87, 5wcel 1977 . . 3 wff 𝐶 ∈ ℋ
93, 6, 8w3a 1031 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
10 cva 27161 . . . . 5 class +
114, 7, 10co 6549 . . . 4 class (𝐵 + 𝐶)
12 csm 27162 . . . 4 class ·
131, 11, 12co 6549 . . 3 class (𝐴 · (𝐵 + 𝐶))
141, 4, 12co 6549 . . . 4 class (𝐴 · 𝐵)
151, 7, 12co 6549 . . . 4 class (𝐴 · 𝐶)
1614, 15, 10co 6549 . . 3 class ((𝐴 · 𝐵) + (𝐴 · 𝐶))
1713, 16wceq 1475 . 2 wff (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))
189, 17wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
 Colors of variables: wff setvar class This axiom is referenced by:  hvsub4  27278  hvsubass  27285  hvsubdistr1  27290  hvdistr1i  27292  hv2times  27302  hilvc  27403  hhssnv  27505  shscli  27560  spanunsni  27822  hoadddi  28046  lnopmi  28243  lnophsi  28244
 Copyright terms: Public domain W3C validator