HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsub4 Structured version   Visualization version   GIF version

Theorem hvsub4 27278
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 𝐶) + (𝐵 𝐷)))

Proof of Theorem hvsub4
StepHypRef Expression
1 hvaddcl 27253 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
2 hvaddcl 27253 . . 3 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 + 𝐷) ∈ ℋ)
3 hvsubval 27257 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 + 𝐷) ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))))
41, 2, 3syl2an 493 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))))
5 hvsubval 27257 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐶) = (𝐴 + (-1 · 𝐶)))
65ad2ant2r 779 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 𝐶) = (𝐴 + (-1 · 𝐶)))
7 hvsubval 27257 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 𝐷) = (𝐵 + (-1 · 𝐷)))
87ad2ant2l 778 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐵 𝐷) = (𝐵 + (-1 · 𝐷)))
96, 8oveq12d 6567 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐶) + (𝐵 𝐷)) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))
10 neg1cn 11001 . . . . . . 7 -1 ∈ ℂ
11 ax-hvdistr1 27249 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
1210, 11mp3an1 1403 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
1312adantl 481 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
1413oveq2d 6565 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))))
15 hvmulcl 27254 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 · 𝐶) ∈ ℋ)
1610, 15mpan 702 . . . . . . . 8 (𝐶 ∈ ℋ → (-1 · 𝐶) ∈ ℋ)
1716anim2i 591 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ))
18 hvmulcl 27254 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝐷 ∈ ℋ) → (-1 · 𝐷) ∈ ℋ)
1910, 18mpan 702 . . . . . . . 8 (𝐷 ∈ ℋ → (-1 · 𝐷) ∈ ℋ)
2019anim2i 591 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ))
2117, 20anim12i 588 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ)))
2221an4s 865 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ)))
23 hvadd4 27277 . . . . 5 (((𝐴 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ)) → ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))))
2422, 23syl 17 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))))
2514, 24eqtr4d 2647 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))
269, 25eqtr4d 2647 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐶) + (𝐵 𝐷)) = ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))))
274, 26eqtr4d 2647 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 𝐶) + (𝐵 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  (class class class)co 6549  cc 9813  1c1 9816  -cneg 10146  chil 27160   + cva 27161   · csm 27162   cmv 27166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hfvmul 27246  ax-hvdistr1 27249
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148  df-hvsub 27212
This theorem is referenced by:  hvaddsub4  27319  5oalem2  27898  3oalem2  27906
  Copyright terms: Public domain W3C validator