HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanunsni Structured version   Visualization version   GIF version

Theorem spanunsni 27822
Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanunsn.1 𝐴C
spanunsn.2 𝐵 ∈ ℋ
Assertion
Ref Expression
spanunsni (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))

Proof of Theorem spanunsni
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanunsn.1 . . . . . . 7 𝐴C
21chshii 27468 . . . . . 6 𝐴S
3 spanunsn.2 . . . . . . 7 𝐵 ∈ ℋ
4 snssi 4280 . . . . . . 7 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
5 spancl 27579 . . . . . . 7 ({𝐵} ⊆ ℋ → (span‘{𝐵}) ∈ S )
63, 4, 5mp2b 10 . . . . . 6 (span‘{𝐵}) ∈ S
72, 6shseli 27559 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧))
83elspansni 27801 . . . . . . . 8 (𝑧 ∈ (span‘{𝐵}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵))
91, 3pjclii 27664 . . . . . . . . . . . . . . . 16 ((proj𝐴)‘𝐵) ∈ 𝐴
10 shmulcl 27459 . . . . . . . . . . . . . . . 16 ((𝐴S𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
112, 9, 10mp3an13 1407 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
12 shaddcl 27458 . . . . . . . . . . . . . . 15 ((𝐴S𝑦𝐴 ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
1311, 12syl3an3 1353 . . . . . . . . . . . . . 14 ((𝐴S𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
142, 13mp3an1 1403 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
151choccli 27550 . . . . . . . . . . . . . . . 16 (⊥‘𝐴) ∈ C
1615, 3pjhclii 27665 . . . . . . . . . . . . . . 15 ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ
17 spansnmul 27807 . . . . . . . . . . . . . . 15 ((((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1816, 17mpan 702 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1918adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
201, 3pjpji 27667 . . . . . . . . . . . . . . . . . 18 𝐵 = (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))
2120oveq2i 6560 . . . . . . . . . . . . . . . . 17 (𝑤 · 𝐵) = (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵)))
221, 3pjhclii 27665 . . . . . . . . . . . . . . . . . 18 ((proj𝐴)‘𝐵) ∈ ℋ
23 ax-hvdistr1 27249 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2422, 16, 23mp3an23 1408 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2521, 24syl5eq 2656 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2625adantl 481 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2726oveq2d 6565 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
281cheli 27473 . . . . . . . . . . . . . . 15 (𝑦𝐴𝑦 ∈ ℋ)
29 hvmulcl 27254 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
3022, 29mpan2 703 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
31 hvmulcl 27254 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3216, 31mpan2 703 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3330, 32jca 553 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
34 ax-hvass 27243 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
35343expb 1258 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3628, 33, 35syl2an 493 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3727, 36eqtr4d 2647 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
38 rspceov 6590 . . . . . . . . . . . . 13 (((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴 ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∧ (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
3914, 19, 37, 38syl3anc 1318 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
40 snssi 4280 . . . . . . . . . . . . . 14 (((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ → {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ)
41 spancl 27579 . . . . . . . . . . . . . 14 ({((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ → (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S )
4216, 40, 41mp2b 10 . . . . . . . . . . . . 13 (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S
432, 42shseli 27559 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
4439, 43sylibr 223 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
45 oveq2 6557 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · 𝐵) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · 𝐵)))
4645eqeq2d 2620 . . . . . . . . . . . 12 (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · 𝐵))))
4746biimpa 500 . . . . . . . . . . 11 ((𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · 𝐵)))
48 eleq1 2676 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · 𝐵)) → (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
4948biimparc 503 . . . . . . . . . . 11 (((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ∧ 𝑥 = (𝑦 + (𝑤 · 𝐵))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5044, 47, 49syl2an 493 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5150exp43 638 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))))
5251rexlimdv 3012 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
538, 52syl5bi 231 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐵}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
5453rexlimdv 3012 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
5554rexlimiv 3009 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
567, 55sylbi 206 . . . 4 (𝑥 ∈ (𝐴 + (span‘{𝐵})) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
572, 42shseli 27559 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧))
5816elspansni 27801 . . . . . . . 8 (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))
59 negcl 10160 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → -𝑤 ∈ ℂ)
60 shmulcl 27459 . . . . . . . . . . . . . . . . . 18 ((𝐴S ∧ -𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
612, 9, 60mp3an13 1407 . . . . . . . . . . . . . . . . 17 (-𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
63 shaddcl 27458 . . . . . . . . . . . . . . . 16 ((𝐴S ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6462, 63syl3an2 1352 . . . . . . . . . . . . . . 15 ((𝐴S𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
652, 64mp3an1 1403 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6665ancoms 468 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
67 spansnmul 27807 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
683, 67mpan 702 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
6968adantl 481 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
70 hvm1neg 27273 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7122, 70mpan2 703 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7271oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))))
73 hvnegid 27268 . . . . . . . . . . . . . . . . . . 19 ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
7430, 73syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
75 hvmulcl 27254 . . . . . . . . . . . . . . . . . . . 20 ((-𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
7659, 22, 75sylancl 693 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
77 ax-hvcom 27242 . . . . . . . . . . . . . . . . . . 19 (((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7830, 76, 77syl2anc 691 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7972, 74, 783eqtr3d 2652 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8079adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8180oveq1d 6564 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
82 hvaddcl 27253 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
8328, 32, 82syl2an 493 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
84 hvaddid2 27264 . . . . . . . . . . . . . . . 16 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8676, 30jca 553 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8786adantl 481 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8828, 32anim12i 588 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
89 hvadd4 27277 . . . . . . . . . . . . . . . 16 ((((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) ∧ (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9087, 88, 89syl2anc 691 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9181, 85, 903eqtr3d 2652 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9226oveq2d 6565 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9391, 92eqtr4d 2647 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)))
94 rspceov 6590 . . . . . . . . . . . . 13 ((((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴 ∧ (𝑤 · 𝐵) ∈ (span‘{𝐵}) ∧ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵))) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9566, 69, 93, 94syl3anc 1318 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
962, 6shseli 27559 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9795, 96sylibr 223 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})))
98 oveq2 6557 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
9998eqeq2d 2620 . . . . . . . . . . . 12 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
10099biimpa 500 . . . . . . . . . . 11 ((𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
101 eleq1 2676 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) → (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵}))))
102101biimparc 503 . . . . . . . . . . 11 (((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ∧ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10397, 100, 102syl2an 493 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
104103exp43 638 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))))
105104rexlimdv 3012 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
10658, 105syl5bi 231 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
107106rexlimdv 3012 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))
108107rexlimiv 3009 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10957, 108sylbi 206 . . . 4 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
11056, 109impbii 198 . . 3 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
111110eqriv 2607 . 2 (𝐴 + (span‘{𝐵})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1121chssii 27472 . . . 4 𝐴 ⊆ ℋ
1133, 4ax-mp 5 . . . 4 {𝐵} ⊆ ℋ
114112, 113spanuni 27787 . . 3 (span‘(𝐴 ∪ {𝐵})) = ((span‘𝐴) + (span‘{𝐵}))
115 spanid 27590 . . . . 5 (𝐴S → (span‘𝐴) = 𝐴)
1162, 115ax-mp 5 . . . 4 (span‘𝐴) = 𝐴
117116oveq1i 6559 . . 3 ((span‘𝐴) + (span‘{𝐵})) = (𝐴 + (span‘{𝐵}))
118114, 117eqtri 2632 . 2 (span‘(𝐴 ∪ {𝐵})) = (𝐴 + (span‘{𝐵}))
11916, 40ax-mp 5 . . . 4 {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ
120112, 119spanuni 27787 . . 3 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
121116oveq1i 6559 . . 3 ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
122120, 121eqtri 2632 . 2 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
123111, 118, 1223eqtr4i 2642 1 (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wrex 2897  cun 3538  wss 3540  {csn 4125  cfv 5804  (class class class)co 6549  cc 9813  1c1 9816  -cneg 10146  chil 27160   + cva 27161   · csm 27162  0c0v 27165   S csh 27169   C cch 27170  cort 27171   + cph 27172  spancspn 27173  projcpjh 27178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326  ax-hcompl 27443
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-lm 20843  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cfil 22861  df-cau 22862  df-cmet 22863  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-ssp 26961  df-ph 27052  df-cbn 27103  df-hnorm 27209  df-hba 27210  df-hvsub 27212  df-hlim 27213  df-hcau 27214  df-sh 27448  df-ch 27462  df-oc 27493  df-ch0 27494  df-shs 27551  df-span 27552  df-pjh 27638
This theorem is referenced by:  spansnji  27889
  Copyright terms: Public domain W3C validator