Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his1 Structured version   Visualization version   GIF version

Axiom ax-his1 27323
 Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. Note that ∗‘𝑥 is the complex conjugate cjval 13690 of 𝑥. In the literature, the inner product of 𝐴 and 𝐵 is usually written ⟨𝐴, 𝐵⟩, but our operation notation co 6549 allows us to use existing theorems about operations and also avoids a clash with the definition of an ordered pair df-op 4132. Physicists use ⟨𝐵 ∣ 𝐴⟩, called Dirac bra-ket notation, to represent this operation; see comments in df-bra 28093. (Contributed by NM, 29-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))

Detailed syntax breakdown of Axiom ax-his1
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chil 27160 . . . 4 class
31, 2wcel 1977 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 1977 . . 3 wff 𝐵 ∈ ℋ
63, 5wa 383 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)
7 csp 27163 . . . 4 class ·ih
81, 4, 7co 6549 . . 3 class (𝐴 ·ih 𝐵)
94, 1, 7co 6549 . . . 4 class (𝐵 ·ih 𝐴)
10 ccj 13684 . . . 4 class
119, 10cfv 5804 . . 3 class (∗‘(𝐵 ·ih 𝐴))
128, 11wceq 1475 . 2 wff (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))
136, 12wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
 Colors of variables: wff setvar class This axiom is referenced by:  his5  27327  his7  27331  his2sub2  27334  hire  27335  hi02  27338  his1i  27341  abshicom  27342  hial2eq2  27348  orthcom  27349  adjsym  28076  cnvadj  28135  adj2  28177
 Copyright terms: Public domain W3C validator