MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2dlem2 Structured version   Visualization version   GIF version

Theorem gsum2dlem2 18193
Description: Lemma for gsum2d 18194. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b 𝐵 = (Base‘𝐺)
gsum2d.z 0 = (0g𝐺)
gsum2d.g (𝜑𝐺 ∈ CMnd)
gsum2d.a (𝜑𝐴𝑉)
gsum2d.r (𝜑 → Rel 𝐴)
gsum2d.d (𝜑𝐷𝑊)
gsum2d.s (𝜑 → dom 𝐴𝐷)
gsum2d.f (𝜑𝐹:𝐴𝐵)
gsum2d.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsum2dlem2 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝑗,𝑘,𝐴   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem gsum2dlem2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d.w . . . 4 (𝜑𝐹 finSupp 0 )
21fsuppimpd 8165 . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
3 dmfi 8129 . . 3 ((𝐹 supp 0 ) ∈ Fin → dom (𝐹 supp 0 ) ∈ Fin)
42, 3syl 17 . 2 (𝜑 → dom (𝐹 supp 0 ) ∈ Fin)
5 reseq2 5312 . . . . . . . . 9 (𝑥 = ∅ → (𝐴𝑥) = (𝐴 ↾ ∅))
6 res0 5321 . . . . . . . . 9 (𝐴 ↾ ∅) = ∅
75, 6syl6eq 2660 . . . . . . . 8 (𝑥 = ∅ → (𝐴𝑥) = ∅)
87reseq2d 5317 . . . . . . 7 (𝑥 = ∅ → (𝐹 ↾ (𝐴𝑥)) = (𝐹 ↾ ∅))
9 res0 5321 . . . . . . 7 (𝐹 ↾ ∅) = ∅
108, 9syl6eq 2660 . . . . . 6 (𝑥 = ∅ → (𝐹 ↾ (𝐴𝑥)) = ∅)
1110oveq2d 6565 . . . . 5 (𝑥 = ∅ → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg ∅))
12 mpteq1 4665 . . . . . . 7 (𝑥 = ∅ → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ ∅ ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
13 mpt0 5934 . . . . . . 7 (𝑗 ∈ ∅ ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = ∅
1412, 13syl6eq 2660 . . . . . 6 (𝑥 = ∅ → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = ∅)
1514oveq2d 6565 . . . . 5 (𝑥 = ∅ → (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg ∅))
1611, 15eqeq12d 2625 . . . 4 (𝑥 = ∅ → ((𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg ∅) = (𝐺 Σg ∅)))
1716imbi2d 329 . . 3 (𝑥 = ∅ → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg ∅) = (𝐺 Σg ∅))))
18 reseq2 5312 . . . . . . 7 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
1918reseq2d 5317 . . . . . 6 (𝑥 = 𝑦 → (𝐹 ↾ (𝐴𝑥)) = (𝐹 ↾ (𝐴𝑦)))
2019oveq2d 6565 . . . . 5 (𝑥 = 𝑦 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴𝑦))))
21 mpteq1 4665 . . . . . 6 (𝑥 = 𝑦 → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2221oveq2d 6565 . . . . 5 (𝑥 = 𝑦 → (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
2320, 22eqeq12d 2625 . . . 4 (𝑥 = 𝑦 → ((𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
2423imbi2d 329 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
25 reseq2 5312 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐴𝑥) = (𝐴 ↾ (𝑦 ∪ {𝑧})))
2625reseq2d 5317 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹 ↾ (𝐴𝑥)) = (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))))
2726oveq2d 6565 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))))
28 mpteq1 4665 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
2928oveq2d 6565 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
3027, 29eqeq12d 2625 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
3130imbi2d 329 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
32 reseq2 5312 . . . . . . 7 (𝑥 = dom (𝐹 supp 0 ) → (𝐴𝑥) = (𝐴 ↾ dom (𝐹 supp 0 )))
3332reseq2d 5317 . . . . . 6 (𝑥 = dom (𝐹 supp 0 ) → (𝐹 ↾ (𝐴𝑥)) = (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 ))))
3433oveq2d 6565 . . . . 5 (𝑥 = dom (𝐹 supp 0 ) → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))))
35 mpteq1 4665 . . . . . 6 (𝑥 = dom (𝐹 supp 0 ) → (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))
3635oveq2d 6565 . . . . 5 (𝑥 = dom (𝐹 supp 0 ) → (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
3734, 36eqeq12d 2625 . . . 4 (𝑥 = dom (𝐹 supp 0 ) → ((𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
3837imbi2d 329 . . 3 (𝑥 = dom (𝐹 supp 0 ) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑥))) = (𝐺 Σg (𝑗𝑥 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) ↔ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
39 eqidd 2611 . . 3 (𝜑 → (𝐺 Σg ∅) = (𝐺 Σg ∅))
40 oveq1 6556 . . . . . 6 ((𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → ((𝐺 Σg (𝐹 ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
41 gsum2d.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
42 gsum2d.z . . . . . . . . 9 0 = (0g𝐺)
43 eqid 2610 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
44 gsum2d.g . . . . . . . . . 10 (𝜑𝐺 ∈ CMnd)
4544adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝐺 ∈ CMnd)
46 gsum2d.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
47 resexg 5362 . . . . . . . . . . 11 (𝐴𝑉 → (𝐴 ↾ (𝑦 ∪ {𝑧})) ∈ V)
4846, 47syl 17 . . . . . . . . . 10 (𝜑 → (𝐴 ↾ (𝑦 ∪ {𝑧})) ∈ V)
4948adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴 ↾ (𝑦 ∪ {𝑧})) ∈ V)
50 gsum2d.f . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
51 resss 5342 . . . . . . . . . . 11 (𝐴 ↾ (𝑦 ∪ {𝑧})) ⊆ 𝐴
52 fssres 5983 . . . . . . . . . . 11 ((𝐹:𝐴𝐵 ∧ (𝐴 ↾ (𝑦 ∪ {𝑧})) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵)
5350, 51, 52sylancl 693 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵)
5453adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))):(𝐴 ↾ (𝑦 ∪ {𝑧}))⟶𝐵)
55 ffun 5961 . . . . . . . . . . . . 13 (𝐹:𝐴𝐵 → Fun 𝐹)
5650, 55syl 17 . . . . . . . . . . . 12 (𝜑 → Fun 𝐹)
57 funres 5843 . . . . . . . . . . . 12 (Fun 𝐹 → Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))))
5856, 57syl 17 . . . . . . . . . . 11 (𝜑 → Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))))
5958adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))))
602adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹 supp 0 ) ∈ Fin)
61 fex 6394 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
6250, 46, 61syl2anc 691 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
63 fvex 6113 . . . . . . . . . . . . . 14 (0g𝐺) ∈ V
6442, 63eqeltri 2684 . . . . . . . . . . . . 13 0 ∈ V
65 ressuppss 7201 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 ))
6662, 64, 65sylancl 693 . . . . . . . . . . . 12 (𝜑 → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 ))
6766adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 ))
68 ssfi 8065 . . . . . . . . . . 11 (((𝐹 supp 0 ) ∈ Fin ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ⊆ (𝐹 supp 0 )) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)
6960, 67, 68syl2anc 691 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)
70 resexg 5362 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∈ V)
7162, 70syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∈ V)
72 isfsupp 8162 . . . . . . . . . . . 12 (((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∈ V ∧ 0 ∈ V) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)))
7371, 64, 72sylancl 693 . . . . . . . . . . 11 (𝜑 → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)))
7473adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 ↔ (Fun (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ∧ ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) supp 0 ) ∈ Fin)))
7559, 69, 74mpbir2and 959 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) finSupp 0 )
76 simprr 792 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ¬ 𝑧𝑦)
77 disjsn 4192 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
7876, 77sylibr 223 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝑦 ∩ {𝑧}) = ∅)
7978reseq2d 5317 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴 ↾ (𝑦 ∩ {𝑧})) = (𝐴 ↾ ∅))
80 resindi 5332 . . . . . . . . . 10 (𝐴 ↾ (𝑦 ∩ {𝑧})) = ((𝐴𝑦) ∩ (𝐴 ↾ {𝑧}))
8179, 80, 63eqtr3g 2667 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐴𝑦) ∩ (𝐴 ↾ {𝑧})) = ∅)
82 resundi 5330 . . . . . . . . . 10 (𝐴 ↾ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∪ (𝐴 ↾ {𝑧}))
8382a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐴 ↾ (𝑦 ∪ {𝑧})) = ((𝐴𝑦) ∪ (𝐴 ↾ {𝑧})))
8441, 42, 43, 45, 49, 54, 75, 81, 83gsumsplit 18151 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = ((𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})))))
85 ssun1 3738 . . . . . . . . . . 11 𝑦 ⊆ (𝑦 ∪ {𝑧})
86 ssres2 5345 . . . . . . . . . . 11 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (𝐴𝑦) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})))
87 resabs1 5347 . . . . . . . . . . 11 ((𝐴𝑦) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦)) = (𝐹 ↾ (𝐴𝑦)))
8885, 86, 87mp2b 10 . . . . . . . . . 10 ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦)) = (𝐹 ↾ (𝐴𝑦))
8988oveq2i 6560 . . . . . . . . 9 (𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦))) = (𝐺 Σg (𝐹 ↾ (𝐴𝑦)))
90 ssun2 3739 . . . . . . . . . . 11 {𝑧} ⊆ (𝑦 ∪ {𝑧})
91 ssres2 5345 . . . . . . . . . . 11 ({𝑧} ⊆ (𝑦 ∪ {𝑧}) → (𝐴 ↾ {𝑧}) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})))
92 resabs1 5347 . . . . . . . . . . 11 ((𝐴 ↾ {𝑧}) ⊆ (𝐴 ↾ (𝑦 ∪ {𝑧})) → ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})) = (𝐹 ↾ (𝐴 ↾ {𝑧})))
9390, 91, 92mp2b 10 . . . . . . . . . 10 ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})) = (𝐹 ↾ (𝐴 ↾ {𝑧}))
9493oveq2i 6560 . . . . . . . . 9 (𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧}))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))
9589, 94oveq12i 6561 . . . . . . . 8 ((𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg ((𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧}))) ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝐹 ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))
9684, 95syl6eq 2660 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = ((𝐺 Σg (𝐹 ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
97 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑦 ∈ Fin)
98 gsum2d.r . . . . . . . . . . 11 (𝜑 → Rel 𝐴)
99 gsum2d.d . . . . . . . . . . 11 (𝜑𝐷𝑊)
100 gsum2d.s . . . . . . . . . . 11 (𝜑 → dom 𝐴𝐷)
10141, 42, 44, 46, 98, 99, 100, 50, 1gsum2dlem1 18192 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
102101ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) ∧ 𝑗𝑦) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵)
103 vex 3176 . . . . . . . . . 10 𝑧 ∈ V
104103a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → 𝑧 ∈ V)
105 sneq 4135 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑧 → {𝑗} = {𝑧})
106105imaeq2d 5385 . . . . . . . . . . . . . . 15 (𝑗 = 𝑧 → (𝐴 “ {𝑗}) = (𝐴 “ {𝑧}))
107 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑗 = 𝑧 → (𝑗𝐹𝑘) = (𝑧𝐹𝑘))
108106, 107mpteq12dv 4663 . . . . . . . . . . . . . 14 (𝑗 = 𝑧 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘)))
109108oveq2d 6565 . . . . . . . . . . . . 13 (𝑗 = 𝑧 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))))
110109eleq1d 2672 . . . . . . . . . . . 12 (𝑗 = 𝑧 → ((𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵 ↔ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵))
111110imbi2d 329 . . . . . . . . . . 11 (𝑗 = 𝑧 → ((𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) ∈ 𝐵) ↔ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵)))
112111, 101chvarv 2251 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵)
113112adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) ∈ 𝐵)
11441, 43, 45, 97, 102, 104, 76, 113, 109gsumunsn 18182 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘)))))
115105reseq2d 5317 . . . . . . . . . . . . . . 15 (𝑗 = 𝑧 → (𝐴 ↾ {𝑗}) = (𝐴 ↾ {𝑧}))
116115reseq2d 5317 . . . . . . . . . . . . . 14 (𝑗 = 𝑧 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = (𝐹 ↾ (𝐴 ↾ {𝑧})))
117116oveq2d 6565 . . . . . . . . . . . . 13 (𝑗 = 𝑧 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))
118109, 117eqeq12d 2625 . . . . . . . . . . . 12 (𝑗 = 𝑧 → ((𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) ↔ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
119118imbi2d 329 . . . . . . . . . . 11 (𝑗 = 𝑧 → ((𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗})))) ↔ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))))
120 imaexg 6995 . . . . . . . . . . . . . 14 (𝐴𝑉 → (𝐴 “ {𝑗}) ∈ V)
12146, 120syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐴 “ {𝑗}) ∈ V)
122 vex 3176 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
123 vex 3176 . . . . . . . . . . . . . . . 16 𝑘 ∈ V
124122, 123elimasn 5409 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐴 “ {𝑗}) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝐴)
125 df-ov 6552 . . . . . . . . . . . . . . . 16 (𝑗𝐹𝑘) = (𝐹‘⟨𝑗, 𝑘⟩)
12650ffvelrnda 6267 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ 𝐴) → (𝐹‘⟨𝑗, 𝑘⟩) ∈ 𝐵)
127125, 126syl5eqel 2692 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ 𝐴) → (𝑗𝐹𝑘) ∈ 𝐵)
128124, 127sylan2b 491 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐴 “ {𝑗})) → (𝑗𝐹𝑘) ∈ 𝐵)
129 eqid 2610 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))
130128, 129fmptd 6292 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)):(𝐴 “ {𝑗})⟶𝐵)
131 funmpt 5840 . . . . . . . . . . . . . . 15 Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))
132131a1i 11 . . . . . . . . . . . . . 14 (𝜑 → Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))
133 rnfi 8132 . . . . . . . . . . . . . . . 16 ((𝐹 supp 0 ) ∈ Fin → ran (𝐹 supp 0 ) ∈ Fin)
1342, 133syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ran (𝐹 supp 0 ) ∈ Fin)
135124biimpi 205 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝐴 “ {𝑗}) → ⟨𝑗, 𝑘⟩ ∈ 𝐴)
136122, 123opelrn 5278 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ) → 𝑘 ∈ ran (𝐹 supp 0 ))
137136con3i 149 . . . . . . . . . . . . . . . . . . 19 𝑘 ∈ ran (𝐹 supp 0 ) → ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 ))
138135, 137anim12i 588 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )) → (⟨𝑗, 𝑘⟩ ∈ 𝐴 ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )))
139 eldif 3550 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) ↔ (𝑘 ∈ (𝐴 “ {𝑗}) ∧ ¬ 𝑘 ∈ ran (𝐹 supp 0 )))
140 eldif 3550 . . . . . . . . . . . . . . . . . 18 (⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )) ↔ (⟨𝑗, 𝑘⟩ ∈ 𝐴 ∧ ¬ ⟨𝑗, 𝑘⟩ ∈ (𝐹 supp 0 )))
141138, 139, 1403imtr4i 280 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 )) → ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 )))
142 ssid 3587 . . . . . . . . . . . . . . . . . . . 20 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
143142a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
14464a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑0 ∈ V)
14550, 143, 46, 144suppssr 7213 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝐹‘⟨𝑗, 𝑘⟩) = 0 )
146125, 145syl5eq 2656 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ⟨𝑗, 𝑘⟩ ∈ (𝐴 ∖ (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
147141, 146sylan2 490 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐴 “ {𝑗}) ∖ ran (𝐹 supp 0 ))) → (𝑗𝐹𝑘) = 0 )
148147, 121suppss2 7216 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 ))
149 ssfi 8065 . . . . . . . . . . . . . . 15 ((ran (𝐹 supp 0 ) ∈ Fin ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ⊆ ran (𝐹 supp 0 )) → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin)
150134, 148, 149syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin)
151 mptexg 6389 . . . . . . . . . . . . . . . 16 ((𝐴 “ {𝑗}) ∈ V → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∈ V)
152121, 151syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∈ V)
153 isfsupp 8162 . . . . . . . . . . . . . . 15 (((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∈ V ∧ 0 ∈ V) → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 ↔ (Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin)))
154152, 64, 153sylancl 693 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 ↔ (Fun (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∧ ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) supp 0 ) ∈ Fin)))
155132, 150, 154mpbir2and 959 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) finSupp 0 )
156 2ndconst 7153 . . . . . . . . . . . . . 14 (𝑗 ∈ V → (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))):({𝑗} × (𝐴 “ {𝑗}))–1-1-onto→(𝐴 “ {𝑗}))
157122, 156mp1i 13 . . . . . . . . . . . . 13 (𝜑 → (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))):({𝑗} × (𝐴 “ {𝑗}))–1-1-onto→(𝐴 “ {𝑗}))
15841, 42, 44, 121, 130, 155, 157gsumf1o 18140 . . . . . . . . . . . 12 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))))))
159 1st2nd2 7096 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
160 xp1st 7089 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (1st𝑥) ∈ {𝑗})
161 elsni 4142 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑥) ∈ {𝑗} → (1st𝑥) = 𝑗)
162160, 161syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (1st𝑥) = 𝑗)
163162opeq1d 4346 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑗, (2nd𝑥)⟩)
164159, 163eqtrd 2644 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → 𝑥 = ⟨𝑗, (2nd𝑥)⟩)
165164fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (𝐹𝑥) = (𝐹‘⟨𝑗, (2nd𝑥)⟩))
166 df-ov 6552 . . . . . . . . . . . . . . . 16 (𝑗𝐹(2nd𝑥)) = (𝐹‘⟨𝑗, (2nd𝑥)⟩)
167165, 166syl6eqr 2662 . . . . . . . . . . . . . . 15 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (𝐹𝑥) = (𝑗𝐹(2nd𝑥)))
168167mpteq2ia 4668 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥)) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝑗𝐹(2nd𝑥)))
16950feqmptd 6159 . . . . . . . . . . . . . . . 16 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
170169reseq1d 5316 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ↾ {𝑗})))
171 resss 5342 . . . . . . . . . . . . . . . . 17 (𝐴 ↾ {𝑗}) ⊆ 𝐴
172 resmpt 5369 . . . . . . . . . . . . . . . . 17 ((𝐴 ↾ {𝑗}) ⊆ 𝐴 → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹𝑥)))
173171, 172ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹𝑥))
174 ressn 5588 . . . . . . . . . . . . . . . . 17 (𝐴 ↾ {𝑗}) = ({𝑗} × (𝐴 “ {𝑗}))
175 mpteq1 4665 . . . . . . . . . . . . . . . . 17 ((𝐴 ↾ {𝑗}) = ({𝑗} × (𝐴 “ {𝑗})) → (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹𝑥)) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥)))
176174, 175ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴 ↾ {𝑗}) ↦ (𝐹𝑥)) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥))
177173, 176eqtri 2632 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥))
178170, 177syl6eq 2660 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝐹𝑥)))
179 xp2nd 7090 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) → (2nd𝑥) ∈ (𝐴 “ {𝑗}))
180179adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗}))) → (2nd𝑥) ∈ (𝐴 “ {𝑗}))
181 fo2nd 7080 . . . . . . . . . . . . . . . . . . 19 2nd :V–onto→V
182 fof 6028 . . . . . . . . . . . . . . . . . . 19 (2nd :V–onto→V → 2nd :V⟶V)
183181, 182mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2nd :V⟶V)
184183feqmptd 6159 . . . . . . . . . . . . . . . . 17 (𝜑 → 2nd = (𝑥 ∈ V ↦ (2nd𝑥)))
185184reseq1d 5316 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))) = ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ({𝑗} × (𝐴 “ {𝑗}))))
186 ssv 3588 . . . . . . . . . . . . . . . . 17 ({𝑗} × (𝐴 “ {𝑗})) ⊆ V
187 resmpt 5369 . . . . . . . . . . . . . . . . 17 (({𝑗} × (𝐴 “ {𝑗})) ⊆ V → ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd𝑥)))
188186, 187ax-mp 5 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ↦ (2nd𝑥)) ↾ ({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd𝑥))
189185, 188syl6eq 2660 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (2nd𝑥)))
190 eqidd 2611 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))
191 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑘 = (2nd𝑥) → (𝑗𝐹𝑘) = (𝑗𝐹(2nd𝑥)))
192180, 189, 190, 191fmptco 6303 . . . . . . . . . . . . . 14 (𝜑 → ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗})))) = (𝑥 ∈ ({𝑗} × (𝐴 “ {𝑗})) ↦ (𝑗𝐹(2nd𝑥))))
193168, 178, 1923eqtr4a 2670 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴 ↾ {𝑗})) = ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗})))))
194193oveq2d 6565 . . . . . . . . . . . 12 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))) = (𝐺 Σg ((𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)) ∘ (2nd ↾ ({𝑗} × (𝐴 “ {𝑗}))))))
195158, 194eqtr4d 2647 . . . . . . . . . . 11 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑗}))))
196119, 195chvarv 2251 . . . . . . . . . 10 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))
197196adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘))) = (𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))
198197oveq2d 6565 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑧}) ↦ (𝑧𝐹𝑘)))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
199114, 198eqtrd 2644 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))))
20096, 199eqeq12d 2625 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) ↔ ((𝐺 Σg (𝐹 ↾ (𝐴𝑦)))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧})))) = ((𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))(+g𝐺)(𝐺 Σg (𝐹 ↾ (𝐴 ↾ {𝑧}))))))
20140, 200syl5ibr 235 . . . . 5 ((𝜑 ∧ (𝑦 ∈ Fin ∧ ¬ 𝑧𝑦)) → ((𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
202201expcom 450 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜑 → ((𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))) → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
203202a2d 29 . . 3 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴𝑦))) = (𝐺 Σg (𝑗𝑦 ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) → (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ (𝑦 ∪ {𝑧})))) = (𝐺 Σg (𝑗 ∈ (𝑦 ∪ {𝑧}) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))))
20417, 24, 31, 38, 39, 203findcard2s 8086 . 2 (dom (𝐹 supp 0 ) ∈ Fin → (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘)))))))
2054, 204mpcom 37 1 (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ↾ dom (𝐹 supp 0 )))) = (𝐺 Σg (𝑗 ∈ dom (𝐹 supp 0 ) ↦ (𝐺 Σg (𝑘 ∈ (𝐴 “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042  Rel wrel 5043  Fun wfun 5798  wf 5800  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058   supp csupp 7182  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  CMndccmn 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018
This theorem is referenced by:  gsum2d  18194
  Copyright terms: Public domain W3C validator