MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsum2dlem2 Structured version   Unicode version

Theorem gsum2dlem2 16448
Description: Lemma for gsum2d 16449. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 8-Jun-2019.)
Hypotheses
Ref Expression
gsum2d.b  |-  B  =  ( Base `  G
)
gsum2d.z  |-  .0.  =  ( 0g `  G )
gsum2d.g  |-  ( ph  ->  G  e. CMnd )
gsum2d.a  |-  ( ph  ->  A  e.  V )
gsum2d.r  |-  ( ph  ->  Rel  A )
gsum2d.d  |-  ( ph  ->  D  e.  W )
gsum2d.s  |-  ( ph  ->  dom  A  C_  D
)
gsum2d.f  |-  ( ph  ->  F : A --> B )
gsum2d.w  |-  ( ph  ->  F finSupp  .0.  )
Assertion
Ref Expression
gsum2dlem2  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( F supp 
.0.  ) ) ) )  =  ( G 
gsumg  ( j  e.  dom  ( F supp  .0.  )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
Distinct variable groups:    j, k, A    j, F, k    j, G, k    ph, j, k    B, j, k    D, j, k    .0. , j, k
Allowed substitution hints:    V( j, k)    W( j, k)

Proof of Theorem gsum2dlem2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d.w . . . 4  |-  ( ph  ->  F finSupp  .0.  )
21fsuppimpd 7619 . . 3  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
3 dmfi 7586 . . 3  |-  ( ( F supp  .0.  )  e.  Fin  ->  dom  ( F supp  .0.  )  e.  Fin )
42, 3syl 16 . 2  |-  ( ph  ->  dom  ( F supp  .0.  )  e.  Fin )
5 reseq2 5097 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  |`  x )  =  ( A  |`  (/) ) )
6 res0 5107 . . . . . . . . 9  |-  ( A  |`  (/) )  =  (/)
75, 6syl6eq 2485 . . . . . . . 8  |-  ( x  =  (/)  ->  ( A  |`  x )  =  (/) )
87reseq2d 5102 . . . . . . 7  |-  ( x  =  (/)  ->  ( F  |`  ( A  |`  x
) )  =  ( F  |`  (/) ) )
9 res0 5107 . . . . . . 7  |-  ( F  |`  (/) )  =  (/)
108, 9syl6eq 2485 . . . . . 6  |-  ( x  =  (/)  ->  ( F  |`  ( A  |`  x
) )  =  (/) )
1110oveq2d 6102 . . . . 5  |-  ( x  =  (/)  ->  ( G 
gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G  gsumg  (/) ) )
12 mpteq1 4365 . . . . . . 7  |-  ( x  =  (/)  ->  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  (/)  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
13 mpt0 5531 . . . . . . 7  |-  ( j  e.  (/)  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  =  (/)
1412, 13syl6eq 2485 . . . . . 6  |-  ( x  =  (/)  ->  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  (/) )
1514oveq2d 6102 . . . . 5  |-  ( x  =  (/)  ->  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  (/) ) )
1611, 15eqeq12d 2451 . . . 4  |-  ( x  =  (/)  ->  ( ( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( G  gsumg  (/) )  =  ( G 
gsumg  (/) ) ) )
1716imbi2d 316 . . 3  |-  ( x  =  (/)  ->  ( (
ph  ->  ( G  gsumg  ( F  |`  ( A  |`  x
) ) )  =  ( G  gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  <-> 
( ph  ->  ( G 
gsumg  (/) )  =  ( G 
gsumg  (/) ) ) ) )
18 reseq2 5097 . . . . . . 7  |-  ( x  =  y  ->  ( A  |`  x )  =  ( A  |`  y
) )
1918reseq2d 5102 . . . . . 6  |-  ( x  =  y  ->  ( F  |`  ( A  |`  x ) )  =  ( F  |`  ( A  |`  y ) ) )
2019oveq2d 6102 . . . . 5  |-  ( x  =  y  ->  ( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  y ) ) ) )
21 mpteq1 4365 . . . . . 6  |-  ( x  =  y  ->  (
j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  y  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
2221oveq2d 6102 . . . . 5  |-  ( x  =  y  ->  ( G  gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
2320, 22eqeq12d 2451 . . . 4  |-  ( x  =  y  ->  (
( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( G  gsumg  ( F  |`  ( A  |`  y ) ) )  =  ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
2423imbi2d 316 . . 3  |-  ( x  =  y  ->  (
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G  gsumg  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  <-> 
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  y ) ) )  =  ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
25 reseq2 5097 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A  |`  x )  =  ( A  |`  ( y  u.  { z } ) ) )
2625reseq2d 5102 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( F  |`  ( A  |`  x ) )  =  ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) )
2726oveq2d 6102 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( G  gsumg  ( F  |`  ( A  |`  x
) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) ) )
28 mpteq1 4365 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) ) )  =  ( j  e.  ( y  u.  {
z } )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
2928oveq2d 6102 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( G  gsumg  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
3027, 29eqeq12d 2451 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( G 
gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G  gsumg  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( G  gsumg  ( F  |`  ( A  |`  ( y  u.  {
z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
3130imbi2d 316 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  <-> 
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  ( y  u.  {
z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
32 reseq2 5097 . . . . . . 7  |-  ( x  =  dom  ( F supp 
.0.  )  ->  ( A  |`  x )  =  ( A  |`  dom  ( F supp  .0.  ) ) )
3332reseq2d 5102 . . . . . 6  |-  ( x  =  dom  ( F supp 
.0.  )  ->  ( F  |`  ( A  |`  x ) )  =  ( F  |`  ( A  |`  dom  ( F supp 
.0.  ) ) ) )
3433oveq2d 6102 . . . . 5  |-  ( x  =  dom  ( F supp 
.0.  )  ->  ( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  dom  ( F supp  .0.  ) ) ) ) )
35 mpteq1 4365 . . . . . 6  |-  ( x  =  dom  ( F supp 
.0.  )  ->  (
j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) )  =  ( j  e.  dom  ( F supp  .0.  )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )
3635oveq2d 6102 . . . . 5  |-  ( x  =  dom  ( F supp 
.0.  )  ->  ( G  gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( G  gsumg  ( j  e.  dom  ( F supp  .0.  )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
3734, 36eqeq12d 2451 . . . 4  |-  ( x  =  dom  ( F supp 
.0.  )  ->  (
( G  gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G 
gsumg  ( j  e.  x  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( G  gsumg  ( F  |`  ( A  |` 
dom  ( F supp  .0.  ) ) ) )  =  ( G  gsumg  ( j  e.  dom  ( F supp 
.0.  )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
3837imbi2d 316 . . 3  |-  ( x  =  dom  ( F supp 
.0.  )  ->  (
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  x ) ) )  =  ( G  gsumg  ( j  e.  x  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  <-> 
( ph  ->  ( G 
gsumg  ( F  |`  ( A  |`  dom  ( F supp  .0.  ) ) ) )  =  ( G  gsumg  ( j  e.  dom  ( F supp 
.0.  )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
39 eqidd 2438 . . 3  |-  ( ph  ->  ( G  gsumg  (/) )  =  ( G  gsumg  (/) ) )
40 oveq1 6093 . . . . . 6  |-  ( ( G  gsumg  ( F  |`  ( A  |`  y ) ) )  =  ( G 
gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  -> 
( ( G  gsumg  ( F  |`  ( A  |`  y
) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) )  =  ( ( G 
gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
41 gsum2d.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
42 gsum2d.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
43 eqid 2437 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
44 gsum2d.g . . . . . . . . . 10  |-  ( ph  ->  G  e. CMnd )
4544adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  ->  G  e. CMnd )
46 gsum2d.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  V )
47 resexg 5142 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( A  |`  ( y  u. 
{ z } ) )  e.  _V )
4846, 47syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( A  |`  (
y  u.  { z } ) )  e. 
_V )
4948adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( A  |`  (
y  u.  { z } ) )  e. 
_V )
50 gsum2d.f . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
51 resss 5127 . . . . . . . . . . 11  |-  ( A  |`  ( y  u.  {
z } ) ) 
C_  A
52 fssres 5571 . . . . . . . . . . 11  |-  ( ( F : A --> B  /\  ( A  |`  ( y  u.  { z } ) )  C_  A
)  ->  ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) : ( A  |`  ( y  u.  {
z } ) ) --> B )
5350, 51, 52sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) : ( A  |`  ( y  u.  { z } ) ) --> B )
5453adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) : ( A  |`  ( y  u.  { z } ) ) --> B )
55 ffun 5554 . . . . . . . . . . . . 13  |-  ( F : A --> B  ->  Fun  F )
5650, 55syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  Fun  F )
57 funres 5450 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  Fun  ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ph  ->  Fun  ( F  |`  ( A  |`  ( y  u.  { z } ) ) ) )
5958adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  ->  Fun  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )
602adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( F supp  .0.  )  e.  Fin )
61 fex 5943 . . . . . . . . . . . . . 14  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
6250, 46, 61syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  _V )
63 fvex 5694 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  e. 
_V
6442, 63eqeltri 2507 . . . . . . . . . . . . 13  |-  .0.  e.  _V
65 ressuppss 6703 . . . . . . . . . . . . 13  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  |`  ( A  |`  ( y  u.  { z } ) ) ) supp  .0.  )  C_  ( F supp  .0.  ) )
6662, 64, 65sylancl 662 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) ) supp  .0.  )  C_  ( F supp  .0.  ) )
6766adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( F  |`  ( A  |`  ( y  u.  { z } ) ) ) supp  .0.  )  C_  ( F supp  .0.  ) )
68 ssfi 7525 . . . . . . . . . . 11  |-  ( ( ( F supp  .0.  )  e.  Fin  /\  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) ) supp  .0.  )  C_  ( F supp  .0.  ) )  ->  ( ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) supp 
.0.  )  e.  Fin )
6960, 67, 68syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( F  |`  ( A  |`  ( y  u.  { z } ) ) ) supp  .0.  )  e.  Fin )
70 resexg 5142 . . . . . . . . . . . . 13  |-  ( F  e.  _V  ->  ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  e.  _V )
7162, 70syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) )  e.  _V )
72 isfsupp 7616 . . . . . . . . . . . 12  |-  ( ( ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) )  e.  _V  /\  .0.  e.  _V )  ->  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) ) finSupp  .0.  <->  ( Fun  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) )  /\  (
( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) supp  .0.  )  e.  Fin ) ) )
7371, 64, 72sylancl 662 . . . . . . . . . . 11  |-  ( ph  ->  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) ) finSupp  .0.  <->  ( Fun  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) )  /\  (
( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) supp  .0.  )  e.  Fin ) ) )
7473adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( F  |`  ( A  |`  ( y  u.  { z } ) ) ) finSupp  .0.  <->  ( Fun  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) )  /\  (
( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) supp  .0.  )  e.  Fin ) ) )
7559, 69, 74mpbir2and 913 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) finSupp  .0.  )
76 simprr 756 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  ->  -.  z  e.  y
)
77 disjsn 3929 . . . . . . . . . . . 12  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
7876, 77sylibr 212 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( y  i^i  {
z } )  =  (/) )
7978reseq2d 5102 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( A  |`  (
y  i^i  { z } ) )  =  ( A  |`  (/) ) )
80 resindi 5119 . . . . . . . . . 10  |-  ( A  |`  ( y  i^i  {
z } ) )  =  ( ( A  |`  y )  i^i  ( A  |`  { z } ) )
8179, 80, 63eqtr3g 2492 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( A  |`  y )  i^i  ( A  |`  { z } ) )  =  (/) )
82 resundi 5117 . . . . . . . . . 10  |-  ( A  |`  ( y  u.  {
z } ) )  =  ( ( A  |`  y )  u.  ( A  |`  { z } ) )
8382a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( A  |`  (
y  u.  { z } ) )  =  ( ( A  |`  y )  u.  ( A  |`  { z } ) ) )
8441, 42, 43, 45, 49, 54, 75, 81, 83gsumsplit 16409 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( ( G  gsumg  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |`  y ) ) ) ( +g  `  G
) ( G  gsumg  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |` 
{ z } ) ) ) ) )
85 ssun1 3512 . . . . . . . . . . 11  |-  y  C_  ( y  u.  {
z } )
86 ssres2 5130 . . . . . . . . . . 11  |-  ( y 
C_  ( y  u. 
{ z } )  ->  ( A  |`  y )  C_  ( A  |`  ( y  u. 
{ z } ) ) )
87 resabs1 5132 . . . . . . . . . . 11  |-  ( ( A  |`  y )  C_  ( A  |`  (
y  u.  { z } ) )  -> 
( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  y ) )  =  ( F  |`  ( A  |`  y
) ) )
8885, 86, 87mp2b 10 . . . . . . . . . 10  |-  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |`  y ) )  =  ( F  |`  ( A  |`  y ) )
8988oveq2i 6097 . . . . . . . . 9  |-  ( G 
gsumg  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  y ) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  y ) ) )
90 ssun2 3513 . . . . . . . . . . 11  |-  { z }  C_  ( y  u.  { z } )
91 ssres2 5130 . . . . . . . . . . 11  |-  ( { z }  C_  (
y  u.  { z } )  ->  ( A  |`  { z } )  C_  ( A  |`  ( y  u.  {
z } ) ) )
92 resabs1 5132 . . . . . . . . . . 11  |-  ( ( A  |`  { z } )  C_  ( A  |`  ( y  u. 
{ z } ) )  ->  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |` 
{ z } ) )  =  ( F  |`  ( A  |`  { z } ) ) )
9390, 91, 92mp2b 10 . . . . . . . . . 10  |-  ( ( F  |`  ( A  |`  ( y  u.  {
z } ) ) )  |`  ( A  |` 
{ z } ) )  =  ( F  |`  ( A  |`  { z } ) )
9493oveq2i 6097 . . . . . . . . 9  |-  ( G 
gsumg  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  { z } ) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) )
9589, 94oveq12i 6098 . . . . . . . 8  |-  ( ( G  gsumg  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  y ) ) ) ( +g  `  G ) ( G 
gsumg  ( ( F  |`  ( A  |`  ( y  u.  { z } ) ) )  |`  ( A  |`  { z } ) ) ) )  =  ( ( G  gsumg  ( F  |`  ( A  |`  y ) ) ) ( +g  `  G
) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) )
9684, 95syl6eq 2485 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( ( G  gsumg  ( F  |`  ( A  |`  y
) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
97 simprl 755 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
y  e.  Fin )
98 gsum2d.r . . . . . . . . . . 11  |-  ( ph  ->  Rel  A )
99 gsum2d.d . . . . . . . . . . 11  |-  ( ph  ->  D  e.  W )
100 gsum2d.s . . . . . . . . . . 11  |-  ( ph  ->  dom  A  C_  D
)
10141, 42, 44, 46, 98, 99, 100, 50, 1gsum2dlem1 16447 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )
102101ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  Fin  /\  -.  z  e.  y
) )  /\  j  e.  y )  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )
103 vex 2969 . . . . . . . . . 10  |-  z  e. 
_V
104103a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
z  e.  _V )
105 sneq 3880 . . . . . . . . . . . . . . . 16  |-  ( j  =  z  ->  { j }  =  { z } )
106105imaeq2d 5162 . . . . . . . . . . . . . . 15  |-  ( j  =  z  ->  ( A " { j } )  =  ( A
" { z } ) )
107 oveq1 6093 . . . . . . . . . . . . . . 15  |-  ( j  =  z  ->  (
j F k )  =  ( z F k ) )
108106, 107mpteq12dv 4363 . . . . . . . . . . . . . 14  |-  ( j  =  z  ->  (
k  e.  ( A
" { j } )  |->  ( j F k ) )  =  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )
109108oveq2d 6102 . . . . . . . . . . . . 13  |-  ( j  =  z  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) ) )
110109eleq1d 2503 . . . . . . . . . . . 12  |-  ( j  =  z  ->  (
( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B  <->  ( G  gsumg  ( k  e.  ( A
" { z } )  |->  ( z F k ) ) )  e.  B ) )
111110imbi2d 316 . . . . . . . . . . 11  |-  ( j  =  z  ->  (
( ph  ->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  e.  B )  <-> 
( ph  ->  ( G 
gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  e.  B ) ) )
112111, 101chvarv 1958 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  e.  B )
113112adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  e.  B )
11441, 43, 45, 97, 102, 104, 76, 113, 109gsumunsn 16440 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) ) ) )
115105reseq2d 5102 . . . . . . . . . . . . . . 15  |-  ( j  =  z  ->  ( A  |`  { j } )  =  ( A  |`  { z } ) )
116115reseq2d 5102 . . . . . . . . . . . . . 14  |-  ( j  =  z  ->  ( F  |`  ( A  |`  { j } ) )  =  ( F  |`  ( A  |`  { z } ) ) )
117116oveq2d 6102 . . . . . . . . . . . . 13  |-  ( j  =  z  ->  ( G  gsumg  ( F  |`  ( A  |`  { j } ) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) )
118109, 117eqeq12d 2451 . . . . . . . . . . . 12  |-  ( j  =  z  ->  (
( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { j } ) ) )  <->  ( G  gsumg  ( k  e.  ( A
" { z } )  |->  ( z F k ) ) )  =  ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
119118imbi2d 316 . . . . . . . . . . 11  |-  ( j  =  z  ->  (
( ph  ->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { j } ) ) ) )  <->  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) ) )
120 imaexg 6510 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  ( A " { j } )  e.  _V )
12146, 120syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A " {
j } )  e. 
_V )
122 vex 2969 . . . . . . . . . . . . . . . 16  |-  j  e. 
_V
123 vex 2969 . . . . . . . . . . . . . . . 16  |-  k  e. 
_V
124122, 123elimasn 5187 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( A " { j } )  <->  <. j ,  k >.  e.  A )
125 df-ov 6089 . . . . . . . . . . . . . . . 16  |-  ( j F k )  =  ( F `  <. j ,  k >. )
12650ffvelrnda 5836 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  <. j ,  k >.  e.  A
)  ->  ( F `  <. j ,  k
>. )  e.  B
)
127125, 126syl5eqel 2521 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  <. j ,  k >.  e.  A
)  ->  ( j F k )  e.  B )
128124, 127sylan2b 475 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( A " { j } ) )  -> 
( j F k )  e.  B )
129 eqid 2437 . . . . . . . . . . . . . 14  |-  ( k  e.  ( A " { j } ) 
|->  ( j F k ) )  =  ( k  e.  ( A
" { j } )  |->  ( j F k ) )
130128, 129fmptd 5860 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ( A " { j } )  |->  ( j F k ) ) : ( A " { j } ) --> B )
131 funmpt 5447 . . . . . . . . . . . . . . 15  |-  Fun  (
k  e.  ( A
" { j } )  |->  ( j F k ) )
132131a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  Fun  ( k  e.  ( A " {
j } )  |->  ( j F k ) ) )
133 rnfi 7588 . . . . . . . . . . . . . . . 16  |-  ( ( F supp  .0.  )  e.  Fin  ->  ran  ( F supp  .0.  )  e.  Fin )
1342, 133syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ran  ( F supp  .0.  )  e.  Fin )
135124biimpi 194 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( A " { j } )  ->  <. j ,  k
>.  e.  A )
136122, 123opelrn 5063 . . . . . . . . . . . . . . . . . . . 20  |-  ( <.
j ,  k >.  e.  ( F supp  .0.  )  ->  k  e.  ran  ( F supp  .0.  ) )
137136con3i 135 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  k  e.  ran  ( F supp  .0.  )  ->  -.  <.
j ,  k >.  e.  ( F supp  .0.  )
)
138135, 137anim12i 566 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  e.  ( A
" { j } )  /\  -.  k  e.  ran  ( F supp  .0.  ) )  ->  ( <. j ,  k >.  e.  A  /\  -.  <. j ,  k >.  e.  ( F supp  .0.  ) )
)
139 eldif 3331 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( ( A
" { j } )  \  ran  ( F supp  .0.  ) )  <->  ( k  e.  ( A " {
j } )  /\  -.  k  e.  ran  ( F supp  .0.  ) ) )
140 eldif 3331 . . . . . . . . . . . . . . . . . 18  |-  ( <.
j ,  k >.  e.  ( A  \  ( F supp  .0.  ) )  <->  ( <. j ,  k >.  e.  A  /\  -.  <. j ,  k
>.  e.  ( F supp  .0.  ) ) )
141138, 139, 1403imtr4i 266 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ( A
" { j } )  \  ran  ( F supp  .0.  ) )  ->  <. j ,  k >.  e.  ( A  \  ( F supp  .0.  ) ) )
142 ssid 3368 . . . . . . . . . . . . . . . . . . . 20  |-  ( F supp 
.0.  )  C_  ( F supp  .0.  )
143142a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F supp  .0.  )  C_  ( F supp  .0.  )
)
14464a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  .0.  e.  _V )
14550, 143, 46, 144suppssr 6715 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  <. j ,  k >.  e.  ( A  \  ( F supp  .0.  ) ) )  -> 
( F `  <. j ,  k >. )  =  .0.  )
146125, 145syl5eq 2481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  <. j ,  k >.  e.  ( A  \  ( F supp  .0.  ) ) )  -> 
( j F k )  =  .0.  )
147141, 146sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( ( A " { j } ) 
\  ran  ( F supp  .0.  ) ) )  -> 
( j F k )  =  .0.  )
148147, 121suppss2 6718 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) ) supp  .0.  )  C_  ran  ( F supp  .0.  )
)
149 ssfi 7525 . . . . . . . . . . . . . . 15  |-  ( ( ran  ( F supp  .0.  )  e.  Fin  /\  (
( k  e.  ( A " { j } )  |->  ( j F k ) ) supp 
.0.  )  C_  ran  ( F supp  .0.  ) )  ->  ( ( k  e.  ( A " { j } ) 
|->  ( j F k ) ) supp  .0.  )  e.  Fin )
150134, 148, 149syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) ) supp  .0.  )  e.  Fin )
151 mptexg 5940 . . . . . . . . . . . . . . . 16  |-  ( ( A " { j } )  e.  _V  ->  ( k  e.  ( A " { j } )  |->  ( j F k ) )  e.  _V )
152121, 151syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  ( A " { j } )  |->  ( j F k ) )  e.  _V )
153 isfsupp 7616 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  ( A " { j } )  |->  ( j F k ) )  e.  _V  /\  .0.  e.  _V )  ->  (
( k  e.  ( A " { j } )  |->  ( j F k ) ) finSupp  .0. 
<->  ( Fun  ( k  e.  ( A " { j } ) 
|->  ( j F k ) )  /\  (
( k  e.  ( A " { j } )  |->  ( j F k ) ) supp 
.0.  )  e.  Fin ) ) )
154152, 64, 153sylancl 662 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) ) finSupp  .0.  <->  ( Fun  (
k  e.  ( A
" { j } )  |->  ( j F k ) )  /\  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) ) supp  .0.  )  e.  Fin ) ) )
155132, 150, 154mpbir2and 913 . . . . . . . . . . . . 13  |-  ( ph  ->  ( k  e.  ( A " { j } )  |->  ( j F k ) ) finSupp  .0.  )
156 2ndconst 6657 . . . . . . . . . . . . . 14  |-  ( j  e.  _V  ->  ( 2nd  |`  ( { j }  X.  ( A
" { j } ) ) ) : ( { j }  X.  ( A " { j } ) ) -1-1-onto-> ( A " {
j } ) )
157122, 156mp1i 12 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) : ( { j }  X.  ( A
" { j } ) ) -1-1-onto-> ( A " {
j } ) )
15841, 42, 44, 121, 130, 155, 157gsumf1o 16387 . . . . . . . . . . . 12  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) )  o.  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) ) ) )
159 1st2nd2 6608 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
160 xp1st 6601 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( 1st `  x )  e. 
{ j } )
161 elsni 3895 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  x )  e.  { j }  ->  ( 1st `  x
)  =  j )
162160, 161syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( 1st `  x )  =  j )
163162opeq1d 4058 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. j ,  ( 2nd `  x
) >. )
164159, 163eqtrd 2469 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  x  =  <. j ,  ( 2nd `  x )
>. )
165164fveq2d 5688 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( F `  x )  =  ( F `  <. j ,  ( 2nd `  x ) >. )
)
166 df-ov 6089 . . . . . . . . . . . . . . . 16  |-  ( j F ( 2nd `  x
) )  =  ( F `  <. j ,  ( 2nd `  x
) >. )
167165, 166syl6eqr 2487 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( F `  x )  =  ( j F ( 2nd `  x
) ) )
168167mpteq2ia 4367 . . . . . . . . . . . . . 14  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  |->  ( F `
 x ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( j F ( 2nd `  x
) ) )
16950feqmptd 5737 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
170169reseq1d 5101 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F  |`  ( A  |`  { j } ) )  =  ( ( x  e.  A  |->  ( F `  x
) )  |`  ( A  |`  { j } ) ) )
171 resss 5127 . . . . . . . . . . . . . . . . 17  |-  ( A  |`  { j } ) 
C_  A
172 resmpt 5149 . . . . . . . . . . . . . . . . 17  |-  ( ( A  |`  { j } )  C_  A  ->  ( ( x  e.  A  |->  ( F `  x ) )  |`  ( A  |`  { j } ) )  =  ( x  e.  ( A  |`  { j } )  |->  ( F `
 x ) ) )
173171, 172ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  A  |->  ( F `  x ) )  |`  ( A  |` 
{ j } ) )  =  ( x  e.  ( A  |`  { j } ) 
|->  ( F `  x
) )
174 ressn 5366 . . . . . . . . . . . . . . . . 17  |-  ( A  |`  { j } )  =  ( { j }  X.  ( A
" { j } ) )
175 mpteq1 4365 . . . . . . . . . . . . . . . . 17  |-  ( ( A  |`  { j } )  =  ( { j }  X.  ( A " { j } ) )  -> 
( x  e.  ( A  |`  { j } )  |->  ( F `
 x ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( F `  x ) ) )
176174, 175ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( A  |`  { j } ) 
|->  ( F `  x
) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( F `
 x ) )
177173, 176eqtri 2457 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  |->  ( F `  x ) )  |`  ( A  |` 
{ j } ) )  =  ( x  e.  ( { j }  X.  ( A
" { j } ) )  |->  ( F `
 x ) )
178170, 177syl6eq 2485 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  |`  ( A  |`  { j } ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( F `
 x ) ) )
179 xp2nd 6602 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( { j }  X.  ( A
" { j } ) )  ->  ( 2nd `  x )  e.  ( A " {
j } ) )
180179adantl 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( { j }  X.  ( A " { j } ) ) )  ->  ( 2nd `  x
)  e.  ( A
" { j } ) )
181 fo2nd 6592 . . . . . . . . . . . . . . . . . . 19  |-  2nd : _V -onto-> _V
182 fof 5613 . . . . . . . . . . . . . . . . . . 19  |-  ( 2nd
: _V -onto-> _V  ->  2nd
: _V --> _V )
183181, 182mp1i 12 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  2nd : _V --> _V )
184183feqmptd 5737 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  2nd  =  ( x  e.  _V  |->  ( 2nd `  x ) ) )
185184reseq1d 5101 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) )  =  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( { j }  X.  ( A " { j } ) ) ) )
186 ssv 3369 . . . . . . . . . . . . . . . . 17  |-  ( { j }  X.  ( A " { j } ) )  C_  _V
187 resmpt 5149 . . . . . . . . . . . . . . . . 17  |-  ( ( { j }  X.  ( A " { j } ) )  C_  _V  ->  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( { j }  X.  ( A " { j } ) ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( 2nd `  x
) ) )
188186, 187ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  _V  |->  ( 2nd `  x ) )  |`  ( {
j }  X.  ( A " { j } ) ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( 2nd `  x ) )
189185, 188syl6eq 2485 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( 2nd `  x
) ) )
190 eqidd 2438 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  ( A " { j } )  |->  ( j F k ) )  =  ( k  e.  ( A " {
j } )  |->  ( j F k ) ) )
191 oveq2 6094 . . . . . . . . . . . . . . 15  |-  ( k  =  ( 2nd `  x
)  ->  ( j F k )  =  ( j F ( 2nd `  x ) ) )
192180, 189, 190, 191fmptco 5869 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) )  o.  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) )  =  ( x  e.  ( { j }  X.  ( A " { j } ) )  |->  ( j F ( 2nd `  x ) ) ) )
193168, 178, 1923eqtr4a 2495 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  |`  ( A  |`  { j } ) )  =  ( ( k  e.  ( A " { j } )  |->  ( j F k ) )  o.  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) ) )
194193oveq2d 6102 . . . . . . . . . . . 12  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  { j } ) ) )  =  ( G  gsumg  ( ( k  e.  ( A " {
j } )  |->  ( j F k ) )  o.  ( 2nd  |`  ( { j }  X.  ( A " { j } ) ) ) ) ) )
195158, 194eqtr4d 2472 . . . . . . . . . . 11  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { j } ) ) ) )
196119, 195chvarv 1958 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { z } ) ) ) )
197196adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) )  =  ( G 
gsumg  ( F  |`  ( A  |`  { z } ) ) ) )
198197oveq2d 6102 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( k  e.  ( A " { z } )  |->  ( z F k ) ) ) )  =  ( ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
199114, 198eqtrd 2469 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  =  ( ( G  gsumg  ( j  e.  y  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) )
20096, 199eqeq12d 2451 . . . . . 6  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( G  gsumg  ( F  |`  ( A  |`  (
y  u.  { z } ) ) ) )  =  ( G 
gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  <->  ( ( G  gsumg  ( F  |`  ( A  |`  y ) ) ) ( +g  `  G
) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) )  =  ( ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ( +g  `  G ) ( G  gsumg  ( F  |`  ( A  |`  { z } ) ) ) ) ) )
20140, 200syl5ibr 221 . . . . 5  |-  ( (
ph  /\  ( y  e.  Fin  /\  -.  z  e.  y ) )  -> 
( ( G  gsumg  ( F  |`  ( A  |`  y
) ) )  =  ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  -> 
( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
202201expcom 435 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ph  ->  ( ( G  gsumg  ( F  |`  ( A  |`  y
) ) )  =  ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) )  -> 
( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
203202a2d 26 . . 3  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  y
) ) )  =  ( G  gsumg  ( j  e.  y 
|->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )  ->  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  ( y  u. 
{ z } ) ) ) )  =  ( G  gsumg  ( j  e.  ( y  u.  { z } )  |->  ( G 
gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) ) )
20417, 24, 31, 38, 39, 203findcard2s 7545 . 2  |-  ( dom  ( F supp  .0.  )  e.  Fin  ->  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( F supp 
.0.  ) ) ) )  =  ( G 
gsumg  ( j  e.  dom  ( F supp  .0.  )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) ) )
2054, 204mpcom 36 1  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( A  |`  dom  ( F supp 
.0.  ) ) ) )  =  ( G 
gsumg  ( j  e.  dom  ( F supp  .0.  )  |->  ( G  gsumg  ( k  e.  ( A " { j } )  |->  ( j F k ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2966    \ cdif 3318    u. cun 3319    i^i cin 3320    C_ wss 3321   (/)c0 3630   {csn 3870   <.cop 3876   class class class wbr 4285    e. cmpt 4343    X. cxp 4830   dom cdm 4832   ran crn 4833    |` cres 4834   "cima 4835    o. ccom 4836   Rel wrel 4837   Fun wfun 5405   -->wf 5407   -onto->wfo 5409   -1-1-onto->wf1o 5410   ` cfv 5411  (class class class)co 6086   1stc1st 6570   2ndc2nd 6571   supp csupp 6685   Fincfn 7302   finSupp cfsupp 7612   Basecbs 14166   +g cplusg 14230   0gc0g 14370    gsumg cgsu 14371  CMndccmn 16266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-int 4122  df-iun 4166  df-iin 4167  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-se 4672  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-isom 5420  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-fzo 11541  df-seq 11799  df-hash 12096  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-0g 14372  df-gsum 14373  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15537  df-cntz 15824  df-cmn 16268
This theorem is referenced by:  gsum2d  16449
  Copyright terms: Public domain W3C validator