Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressn Structured version   Visualization version   GIF version

Theorem ressn 5588
 Description: Restriction of a class to a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
ressn (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))

Proof of Theorem ressn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5346 . 2 Rel (𝐴 ↾ {𝐵})
2 relxp 5150 . 2 Rel ({𝐵} × (𝐴 “ {𝐵}))
3 ancom 465 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
4 vex 3176 . . . . . . 7 𝑥 ∈ V
5 vex 3176 . . . . . . 7 𝑦 ∈ V
64, 5elimasn 5409 . . . . . 6 (𝑦 ∈ (𝐴 “ {𝑥}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
7 elsni 4142 . . . . . . . . 9 (𝑥 ∈ {𝐵} → 𝑥 = 𝐵)
87sneqd 4137 . . . . . . . 8 (𝑥 ∈ {𝐵} → {𝑥} = {𝐵})
98imaeq2d 5385 . . . . . . 7 (𝑥 ∈ {𝐵} → (𝐴 “ {𝑥}) = (𝐴 “ {𝐵}))
109eleq2d 2673 . . . . . 6 (𝑥 ∈ {𝐵} → (𝑦 ∈ (𝐴 “ {𝑥}) ↔ 𝑦 ∈ (𝐴 “ {𝐵})))
116, 10syl5bbr 273 . . . . 5 (𝑥 ∈ {𝐵} → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 ∈ (𝐴 “ {𝐵})))
1211pm5.32i 667 . . . 4 ((𝑥 ∈ {𝐵} ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
133, 12bitri 263 . . 3 ((⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
145opelres 5322 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ {𝐵}))
15 opelxp 5070 . . 3 (⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})) ↔ (𝑥 ∈ {𝐵} ∧ 𝑦 ∈ (𝐴 “ {𝐵})))
1613, 14, 153bitr4i 291 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ↾ {𝐵}) ↔ ⟨𝑥, 𝑦⟩ ∈ ({𝐵} × (𝐴 “ {𝐵})))
171, 2, 16eqrelriiv 5137 1 (𝐴 ↾ {𝐵}) = ({𝐵} × (𝐴 “ {𝐵}))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {csn 4125  ⟨cop 4131   × cxp 5036   ↾ cres 5040   “ cima 5041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051 This theorem is referenced by:  gsum2dlem2  18193  dprd2da  18264  ustneism  21837
 Copyright terms: Public domain W3C validator