MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfsupp Structured version   Visualization version   GIF version

Theorem isfsupp 8162
Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
isfsupp ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))

Proof of Theorem isfsupp
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funeq 5823 . . . 4 (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅))
21adantr 480 . . 3 ((𝑟 = 𝑅𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅))
3 oveq12 6558 . . . 4 ((𝑟 = 𝑅𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍))
43eleq1d 2672 . . 3 ((𝑟 = 𝑅𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin))
52, 4anbi12d 743 . 2 ((𝑟 = 𝑅𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
6 df-fsupp 8159 . 2 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
75, 6brabga 4914 1 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  Fun wfun 5798  (class class class)co 6549   supp csupp 7182  Fincfn 7841   finSupp cfsupp 8158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-fsupp 8159
This theorem is referenced by:  funisfsupp  8163  fsuppimp  8164  fdmfifsupp  8168  fczfsuppd  8176  fsuppmptif  8188  fsuppco2  8191  fsuppcor  8192  gsumzadd  18145  gsumpt  18184  gsum2dlem2  18193  gsum2d  18194  gsum2d2lem  18195  rmfsupp  41949  mndpfsupp  41951  scmfsupp  41953  mptcfsupp  41955
  Copyright terms: Public domain W3C validator