Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scmfsupp Structured version   Visualization version   GIF version

Theorem scmfsupp 41953
 Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
scmsuppfi.s 𝑆 = (Scalar‘𝑀)
scmsuppfi.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
scmfsupp (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
Distinct variable groups:   𝑣,𝐴   𝑣,𝑀   𝑣,𝑅   𝑣,𝑉
Allowed substitution hint:   𝑆(𝑣)

Proof of Theorem scmfsupp
StepHypRef Expression
1 funmpt 5840 . . 3 Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣))
21a1i 11 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)))
3 id 22 . . . 4 (𝐴 finSupp (0g𝑆) → 𝐴 finSupp (0g𝑆))
43fsuppimpd 8165 . . 3 (𝐴 finSupp (0g𝑆) → (𝐴 supp (0g𝑆)) ∈ Fin)
5 scmsuppfi.s . . . 4 𝑆 = (Scalar‘𝑀)
6 scmsuppfi.r . . . 4 𝑅 = (Base‘𝑆)
75, 6scmsuppfi 41952 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ (𝐴 supp (0g𝑆)) ∈ Fin) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
84, 7syl3an3 1353 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)
9 mptexg 6389 . . . . 5 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
109adantl 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
11103ad2ant1 1075 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V)
12 fvex 6113 . . 3 (0g𝑀) ∈ V
13 isfsupp 8162 . . 3 (((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∈ V ∧ (0g𝑀) ∈ V) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)))
1411, 12, 13sylancl 693 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀) ↔ (Fun (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) ∧ ((𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) supp (0g𝑀)) ∈ Fin)))
152, 8, 14mpbir2and 959 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑣𝑉 ↦ ((𝐴𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  Fun wfun 5798  ‘cfv 5804  (class class class)co 6549   supp csupp 7182   ↑𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LModclmod 18686 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-fsupp 8159  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ring 18372  df-lmod 18688 This theorem is referenced by:  gsumlsscl  41958  lincfsuppcl  41996  linccl  41997  lincdifsn  42007  lincsum  42012  lincscm  42013  lincresunit3lem2  42063  lincresunit3  42064
 Copyright terms: Public domain W3C validator