Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincdifsn Structured version   Visualization version   GIF version

Theorem lincdifsn 42007
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincdifsn.b 𝐵 = (Base‘𝑀)
lincdifsn.r 𝑅 = (Scalar‘𝑀)
lincdifsn.s 𝑆 = (Base‘𝑅)
lincdifsn.t · = ( ·𝑠𝑀)
lincdifsn.p + = (+g𝑀)
lincdifsn.0 0 = (0g𝑅)
Assertion
Ref Expression
lincdifsn (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))

Proof of Theorem lincdifsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp11 1084 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ LMod)
2 lincdifsn.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincdifsn.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6106 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2632 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 6559 . . . . . . 7 (𝑆𝑚 𝑉) = ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)
76eleq2i 2680 . . . . . 6 (𝐹 ∈ (𝑆𝑚 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
87biimpi 205 . . . . 5 (𝐹 ∈ (𝑆𝑚 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
98adantr 480 . . . 4 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
1093ad2ant2 1076 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
11 lincdifsn.b . . . . . . . 8 𝐵 = (Base‘𝑀)
1211pweqi 4112 . . . . . . 7 𝒫 𝐵 = 𝒫 (Base‘𝑀)
1312eleq2i 2680 . . . . . 6 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1413biimpi 205 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
15143ad2ant2 1076 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
16153ad2ant1 1075 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
17 lincval 41992 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))))
181, 10, 16, 17syl3anc 1318 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))))
19 lincdifsn.p . . . 4 + = (+g𝑀)
20 lmodcmn 18734 . . . . . 6 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
21203ad2ant1 1075 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ CMnd)
22213ad2ant1 1075 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑀 ∈ CMnd)
23 simp12 1085 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑉 ∈ 𝒫 𝐵)
2414anim2i 591 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
25243adant3 1074 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
26253ad2ant1 1075 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
27 simp2l 1080 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 ∈ (𝑆𝑚 𝑉))
28 lincdifsn.0 . . . . . . . . 9 0 = (0g𝑅)
2928breq2i 4591 . . . . . . . 8 (𝐹 finSupp 0𝐹 finSupp (0g𝑅))
3029biimpi 205 . . . . . . 7 (𝐹 finSupp 0𝐹 finSupp (0g𝑅))
3130adantl 481 . . . . . 6 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 finSupp (0g𝑅))
32313ad2ant2 1076 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹 finSupp (0g𝑅))
333, 2scmfsupp 41953 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
3426, 27, 32, 33syl3anc 1318 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
35 simpl1 1057 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
3635adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
37 elmapi 7765 . . . . . . . . . 10 (𝐹 ∈ (𝑆𝑚 𝑉) → 𝐹:𝑉𝑆)
38 ffvelrn 6265 . . . . . . . . . . . 12 ((𝐹:𝑉𝑆𝑥𝑉) → (𝐹𝑥) ∈ 𝑆)
3938ex 449 . . . . . . . . . . 11 (𝐹:𝑉𝑆 → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆))
4039a1d 25 . . . . . . . . . 10 (𝐹:𝑉𝑆 → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4137, 40syl 17 . . . . . . . . 9 (𝐹 ∈ (𝑆𝑚 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4241adantr 480 . . . . . . . 8 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆)))
4342impcom 445 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥𝑉 → (𝐹𝑥) ∈ 𝑆))
4443imp 444 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → (𝐹𝑥) ∈ 𝑆)
45 elelpwi 4119 . . . . . . . . . 10 ((𝑥𝑉𝑉 ∈ 𝒫 𝐵) → 𝑥𝐵)
4645expcom 450 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑥𝑉𝑥𝐵))
47463ad2ant2 1076 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑥𝑉𝑥𝐵))
4847adantr 480 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑥𝑉𝑥𝐵))
4948imp 444 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → 𝑥𝐵)
50 eqid 2610 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5111, 3, 50, 2lmodvscl 18703 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐹𝑥) ∈ 𝑆𝑥𝐵) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
5236, 44, 49, 51syl3anc 1318 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑥𝑉) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
53523adantl3 1212 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥𝑉) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) ∈ 𝐵)
54 simp13 1086 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝑋𝑉)
55 ffvelrn 6265 . . . . . . . . . . 11 ((𝐹:𝑉𝑆𝑋𝑉) → (𝐹𝑋) ∈ 𝑆)
5655expcom 450 . . . . . . . . . 10 (𝑋𝑉 → (𝐹:𝑉𝑆 → (𝐹𝑋) ∈ 𝑆))
57563ad2ant3 1077 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹:𝑉𝑆 → (𝐹𝑋) ∈ 𝑆))
5837, 57syl5com 31 . . . . . . . 8 (𝐹 ∈ (𝑆𝑚 𝑉) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) ∈ 𝑆))
5958adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) ∈ 𝑆))
6059impcom 445 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹𝑋) ∈ 𝑆)
61 elelpwi 4119 . . . . . . . . 9 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
6261ancoms 468 . . . . . . . 8 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
63623adant1 1072 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
6463adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑋𝐵)
65 lincdifsn.t . . . . . . 7 · = ( ·𝑠𝑀)
6611, 3, 65, 2lmodvscl 18703 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐹𝑋) ∈ 𝑆𝑋𝐵) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
6735, 60, 64, 66syl3anc 1318 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
68673adant3 1074 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝐹𝑋) · 𝑋) ∈ 𝐵)
6965eqcomi 2619 . . . . . . 7 ( ·𝑠𝑀) = ·
7069a1i 11 . . . . . 6 (𝑥 = 𝑋 → ( ·𝑠𝑀) = · )
71 fveq2 6103 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
72 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
7370, 71, 72oveq123d 6570 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑋) · 𝑋))
7473adantl 481 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 = 𝑋) → ((𝐹𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑋) · 𝑋))
7511, 19, 22, 23, 34, 53, 54, 68, 74gsumdifsnd 18183 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
76 fveq1 6102 . . . . . . . . . 10 (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥))
77763ad2ant3 1077 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺𝑥) = ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥))
78 fvres 6117 . . . . . . . . 9 (𝑥 ∈ (𝑉 ∖ {𝑋}) → ((𝐹 ↾ (𝑉 ∖ {𝑋}))‘𝑥) = (𝐹𝑥))
7977, 78sylan9eq 2664 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → (𝐺𝑥) = (𝐹𝑥))
8079oveq1d 6564 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) ∧ 𝑥 ∈ (𝑉 ∖ {𝑋})) → ((𝐺𝑥)( ·𝑠𝑀)𝑥) = ((𝐹𝑥)( ·𝑠𝑀)𝑥))
8180mpteq2dva 4672 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)))
8281eqcomd 2616 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥)) = (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥)))
8382oveq2d 6565 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
8483oveq1d 6564 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
8575, 84eqtrd 2644 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥𝑉 ↦ ((𝐹𝑥)( ·𝑠𝑀)𝑥))) = ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)))
86 eqid 2610 . . . . . . . . . . . 12 𝑉 = 𝑉
8786, 5feq23i 5952 . . . . . . . . . . 11 (𝐹:𝑉𝑆𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
8837, 87sylib 207 . . . . . . . . . 10 (𝐹 ∈ (𝑆𝑚 𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
8988adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
90893ad2ant2 1076 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
91 difssd 3700 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ⊆ 𝑉)
9290, 91fssresd 5984 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
93 feq1 5939 . . . . . . . 8 (𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋})) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
94933ad2ant3 1077 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)) ↔ (𝐹 ↾ (𝑉 ∖ {𝑋})):(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
9592, 94mpbird 246 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀)))
96 fvex 6113 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
97 difexg 4735 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ∈ V)
98973ad2ant2 1076 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑉 ∖ {𝑋}) ∈ V)
99983ad2ant1 1075 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ V)
100 elmapg 7757 . . . . . . 7 (((Base‘(Scalar‘𝑀)) ∈ V ∧ (𝑉 ∖ {𝑋}) ∈ V) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
10196, 99, 100sylancr 694 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑉 ∖ {𝑋})) ↔ 𝐺:(𝑉 ∖ {𝑋})⟶(Base‘(Scalar‘𝑀))))
10295, 101mpbird 246 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑉 ∖ {𝑋})))
103 elpwi 4117 . . . . . . . . . 10 (𝑉 ∈ 𝒫 𝐵𝑉𝐵)
10411sseq2i 3593 . . . . . . . . . . . 12 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
105104biimpi 205 . . . . . . . . . . 11 (𝑉𝐵𝑉 ⊆ (Base‘𝑀))
106105ssdifssd 3710 . . . . . . . . . 10 (𝑉𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
107103, 106syl 17 . . . . . . . . 9 (𝑉 ∈ 𝒫 𝐵 → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
108107adantl 481 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀))
10997adantl 481 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ V)
110 elpwg 4116 . . . . . . . . 9 ((𝑉 ∖ {𝑋}) ∈ V → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)))
111109, 110syl 17 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑉 ∖ {𝑋}) ⊆ (Base‘𝑀)))
112108, 111mpbird 246 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1131123adant3 1074 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
1141133ad2ant1 1075 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀))
115 lincval 41992 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑉 ∖ {𝑋})) ∧ (𝑉 ∖ {𝑋}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
1161, 102, 114, 115syl3anc 1318 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) = (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))))
117116eqcomd 2616 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) = (𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})))
118117oveq1d 6564 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → ((𝑀 Σg (𝑥 ∈ (𝑉 ∖ {𝑋}) ↦ ((𝐺𝑥)( ·𝑠𝑀)𝑥))) + ((𝐹𝑋) · 𝑋)) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))
11918, 85, 1183eqtrd 2648 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹𝑋) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  wss 3540  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  CMndccmn 18016  LModclmod 18686   linC clinc 41987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-linc 41989
This theorem is referenced by:  lincext3  42039  lindslinindimp2lem4  42044  lincresunit3  42064
  Copyright terms: Public domain W3C validator