Step | Hyp | Ref
| Expression |
1 | | simp1 1054 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod) |
2 | | lincfsuppcl.s |
. . . . . . . . 9
⊢ 𝑆 = (Base‘𝑅) |
3 | | lincfsuppcl.r |
. . . . . . . . . 10
⊢ 𝑅 = (Scalar‘𝑀) |
4 | 3 | fveq2i 6106 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
5 | 2, 4 | eqtri 2632 |
. . . . . . . 8
⊢ 𝑆 =
(Base‘(Scalar‘𝑀)) |
6 | 5 | oveq1i 6559 |
. . . . . . 7
⊢ (𝑆 ↑𝑚
𝑉) =
((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) |
7 | 6 | eleq2i 2680 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑉)) |
8 | 7 | biimpi 205 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑉)) |
9 | 8 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑉)) |
10 | 9 | 3ad2ant3 1077 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)) |
11 | | elpwg 4116 |
. . . . . 6
⊢ (𝑉 ∈ 𝑊 → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀))) |
12 | | lincfsuppcl.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) |
13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝑉 ∈ 𝑊 → 𝐵 = (Base‘𝑀)) |
14 | 13 | eqcomd 2616 |
. . . . . . 7
⊢ (𝑉 ∈ 𝑊 → (Base‘𝑀) = 𝐵) |
15 | 14 | sseq2d 3596 |
. . . . . 6
⊢ (𝑉 ∈ 𝑊 → (𝑉 ⊆ (Base‘𝑀) ↔ 𝑉 ⊆ 𝐵)) |
16 | 11, 15 | bitr2d 268 |
. . . . 5
⊢ (𝑉 ∈ 𝑊 → (𝑉 ⊆ 𝐵 ↔ 𝑉 ∈ 𝒫 (Base‘𝑀))) |
17 | 16 | biimpa 500 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
18 | 17 | 3ad2ant2 1076 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉 ∈ 𝒫
(Base‘𝑀)) |
19 | | lincval 41992 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)))) |
20 | 1, 10, 18, 19 | syl3anc 1318 |
. 2
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)))) |
21 | | eqid 2610 |
. . 3
⊢
(0g‘𝑀) = (0g‘𝑀) |
22 | | lmodcmn 18734 |
. . . 4
⊢ (𝑀 ∈ LMod → 𝑀 ∈ CMnd) |
23 | 22 | 3ad2ant1 1075 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ CMnd) |
24 | | simpl 472 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) → 𝑉 ∈ 𝑊) |
25 | 24 | 3ad2ant2 1076 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉 ∈ 𝑊) |
26 | 1 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣 ∈ 𝑉) → 𝑀 ∈ LMod) |
27 | | elmapi 7765 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) → 𝐹:𝑉⟶𝑆) |
28 | | ffvelrn 6265 |
. . . . . . . . . 10
⊢ ((𝐹:𝑉⟶𝑆 ∧ 𝑣 ∈ 𝑉) → (𝐹‘𝑣) ∈ 𝑆) |
29 | 28 | ex 449 |
. . . . . . . . 9
⊢ (𝐹:𝑉⟶𝑆 → (𝑣 ∈ 𝑉 → (𝐹‘𝑣) ∈ 𝑆)) |
30 | 27, 29 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) → (𝑣 ∈ 𝑉 → (𝐹‘𝑣) ∈ 𝑆)) |
31 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → (𝑣 ∈ 𝑉 → (𝐹‘𝑣) ∈ 𝑆)) |
32 | 31 | 3ad2ant3 1077 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣 ∈ 𝑉 → (𝐹‘𝑣) ∈ 𝑆)) |
33 | 32 | imp 444 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣 ∈ 𝑉) → (𝐹‘𝑣) ∈ 𝑆) |
34 | | ssel 3562 |
. . . . . . . 8
⊢ (𝑉 ⊆ 𝐵 → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
35 | 34 | adantl 481 |
. . . . . . 7
⊢ ((𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
36 | 35 | 3ad2ant2 1076 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
37 | 36 | imp 444 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝐵) |
38 | | eqid 2610 |
. . . . . 6
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
39 | 12, 3, 38, 2 | lmodvscl 18703 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝐹‘𝑣) ∈ 𝑆 ∧ 𝑣 ∈ 𝐵) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ∈ 𝐵) |
40 | 26, 33, 37, 39 | syl3anc 1318 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣 ∈ 𝑉) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ∈ 𝐵) |
41 | | eqid 2610 |
. . . 4
⊢ (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) = (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) |
42 | 40, 41 | fmptd 6292 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)):𝑉⟶𝐵) |
43 | | simpl 472 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ (𝑆 ↑𝑚 𝑉)) |
44 | 43 | 3ad2ant3 1077 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ (𝑆 ↑𝑚 𝑉)) |
45 | | simp3r 1083 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp 0 ) |
46 | | lincfsuppcl.0 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
47 | 45, 46 | syl6breq 4624 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp
(0g‘𝑅)) |
48 | 3, 2 | scmfsupp 41953 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫
(Base‘𝑀)) ∧ 𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp (0g‘𝑅)) → (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) finSupp (0g‘𝑀)) |
49 | 1, 18, 44, 47, 48 | syl211anc 1324 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) finSupp (0g‘𝑀)) |
50 | 12, 21, 23, 25, 42, 49 | gsumcl 18139 |
. 2
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑀 Σg
(𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣))) ∈ 𝐵) |
51 | 20, 50 | eqeltrd 2688 |
1
⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵) |