Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincsum Structured version   Visualization version   GIF version

Theorem lincsum 42012
Description: The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincsum.p + = (+g𝑀)
lincsum.x 𝑋 = (𝐴( linC ‘𝑀)𝑉)
lincsum.y 𝑌 = (𝐵( linC ‘𝑀)𝑉)
lincsum.s 𝑆 = (Scalar‘𝑀)
lincsum.r 𝑅 = (Base‘𝑆)
lincsum.b = (+g𝑆)
Assertion
Ref Expression
lincsum (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝐴𝑓 𝐵)( linC ‘𝑀)𝑉))

Proof of Theorem lincsum
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2610 . . 3 (0g𝑀) = (0g𝑀)
3 lincsum.p . . 3 + = (+g𝑀)
4 lmodcmn 18734 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
54adantr 480 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑀 ∈ CMnd)
653ad2ant1 1075 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑀 ∈ CMnd)
7 simpr 476 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
873ad2ant1 1075 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
9 simpl 472 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑀 ∈ LMod)
1093ad2ant1 1075 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → 𝑀 ∈ LMod)
1110adantr 480 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
12 elmapi 7765 . . . . . . . 8 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴:𝑉𝑅)
13 ffvelrn 6265 . . . . . . . . 9 ((𝐴:𝑉𝑅𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
1413ex 449 . . . . . . . 8 (𝐴:𝑉𝑅 → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1512, 14syl 17 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1615adantr 480 . . . . . 6 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
17163ad2ant2 1076 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
1817imp 444 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
19 elelpwi 4119 . . . . . . . 8 ((𝑥𝑉𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑀))
2019expcom 450 . . . . . . 7 (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
2120adantl 481 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
22213ad2ant1 1075 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
2322imp 444 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
24 lincsum.s . . . . 5 𝑆 = (Scalar‘𝑀)
25 eqid 2610 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
26 lincsum.r . . . . 5 𝑅 = (Base‘𝑆)
271, 24, 25, 26lmodvscl 18703 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀)) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
2811, 18, 23, 27syl3anc 1318 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → ((𝐴𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
29 elmapi 7765 . . . . . . . 8 (𝐵 ∈ (𝑅𝑚 𝑉) → 𝐵:𝑉𝑅)
30 ffvelrn 6265 . . . . . . . . 9 ((𝐵:𝑉𝑅𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
3130ex 449 . . . . . . . 8 (𝐵:𝑉𝑅 → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3229, 31syl 17 . . . . . . 7 (𝐵 ∈ (𝑅𝑚 𝑉) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3332adantl 481 . . . . . 6 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
34333ad2ant2 1076 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
3534imp 444 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
361, 24, 25, 26lmodvscl 18703 . . . 4 ((𝑀 ∈ LMod ∧ (𝐵𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀)) → ((𝐵𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
3711, 35, 23, 36syl3anc 1318 . . 3 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) ∧ 𝑥𝑉) → ((𝐵𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
38 eqidd 2611 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)))
39 eqidd 2611 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
40 id 22 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
41 simpl 472 . . . 4 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) → 𝐴 ∈ (𝑅𝑚 𝑉))
42 simpl 472 . . . 4 ((𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆)) → 𝐴 finSupp (0g𝑆))
4324, 26scmfsupp 41953 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐴 finSupp (0g𝑆)) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
4440, 41, 42, 43syl3an 1360 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
45 simpr 476 . . . 4 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) → 𝐵 ∈ (𝑅𝑚 𝑉))
46 simpr 476 . . . 4 ((𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆)) → 𝐵 finSupp (0g𝑆))
4724, 26scmfsupp 41953 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐵 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 finSupp (0g𝑆)) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
4840, 45, 46, 47syl3an 1360 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)) finSupp (0g𝑀))
491, 2, 3, 6, 8, 28, 37, 38, 39, 44, 48gsummptfsadd 18147 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
507adantr 480 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝑉 ∈ 𝒫 (Base‘𝑀))
51 elmapfn 7766 . . . . . . . 8 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴 Fn 𝑉)
5251ad2antrl 760 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐴 Fn 𝑉)
53 elmapfn 7766 . . . . . . . 8 (𝐵 ∈ (𝑅𝑚 𝑉) → 𝐵 Fn 𝑉)
5453ad2antll 761 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐵 Fn 𝑉)
5550, 52, 54offvalfv 41914 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴𝑓 𝐵) = (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))))
56553adant3 1074 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝐴𝑓 𝐵) = (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))))
5724lmodfgrp 18695 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑆 ∈ Grp)
58 grpmnd 17252 . . . . . . . . . . 11 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
5957, 58syl 17 . . . . . . . . . 10 (𝑀 ∈ LMod → 𝑆 ∈ Mnd)
6059ad3antrrr 762 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑦𝑉) → 𝑆 ∈ Mnd)
61 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝐴:𝑉𝑅𝑦𝑉) → (𝐴𝑦) ∈ 𝑅)
6261ex 449 . . . . . . . . . . . . 13 (𝐴:𝑉𝑅 → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6312, 62syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6463ad2antrl 760 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑦𝑉 → (𝐴𝑦) ∈ 𝑅))
6564imp 444 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑦𝑉) → (𝐴𝑦) ∈ 𝑅)
6624fveq2i 6106 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘(Scalar‘𝑀))
6726, 66eqtri 2632 . . . . . . . . . 10 𝑅 = (Base‘(Scalar‘𝑀))
6865, 67syl6eleq 2698 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑦𝑉) → (𝐴𝑦) ∈ (Base‘(Scalar‘𝑀)))
69 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝐵:𝑉𝑅𝑦𝑉) → (𝐵𝑦) ∈ 𝑅)
7069, 67syl6eleq 2698 . . . . . . . . . . . . 13 ((𝐵:𝑉𝑅𝑦𝑉) → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀)))
7170ex 449 . . . . . . . . . . . 12 (𝐵:𝑉𝑅 → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7229, 71syl 17 . . . . . . . . . . 11 (𝐵 ∈ (𝑅𝑚 𝑉) → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7372ad2antll 761 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑦𝑉 → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))))
7473imp 444 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑦𝑉) → (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀)))
7524eqcomi 2619 . . . . . . . . . . 11 (Scalar‘𝑀) = 𝑆
7675fveq2i 6106 . . . . . . . . . 10 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
77 lincsum.b . . . . . . . . . 10 = (+g𝑆)
7876, 77mndcl 17124 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ (𝐴𝑦) ∈ (Base‘(Scalar‘𝑀)) ∧ (𝐵𝑦) ∈ (Base‘(Scalar‘𝑀))) → ((𝐴𝑦) (𝐵𝑦)) ∈ (Base‘(Scalar‘𝑀)))
7960, 68, 74, 78syl3anc 1318 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑦𝑉) → ((𝐴𝑦) (𝐵𝑦)) ∈ (Base‘(Scalar‘𝑀)))
80 eqid 2610 . . . . . . . 8 (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) = (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦)))
8179, 80fmptd 6292 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀)))
82 fvex 6113 . . . . . . . 8 (Base‘(Scalar‘𝑀)) ∈ V
83 elmapg 7757 . . . . . . . 8 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀))))
8482, 50, 83sylancr 694 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))):𝑉⟶(Base‘(Scalar‘𝑀))))
8581, 84mpbird 246 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
86853adant3 1074 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑦𝑉 ↦ ((𝐴𝑦) (𝐵𝑦))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
8756, 86eqeltrd 2688 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝐴𝑓 𝐵) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
88 lincval 41992 . . . 4 ((𝑀 ∈ LMod ∧ (𝐴𝑓 𝐵) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐴𝑓 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑓 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))))
8910, 87, 8, 88syl3anc 1318 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴𝑓 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑓 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))))
9051, 53anim12i 588 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
9190adantl 481 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
9291adantr 480 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (𝐴 Fn 𝑉𝐵 Fn 𝑉))
9350anim1i 590 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑉))
94 fnfvof 6809 . . . . . . . . . 10 (((𝐴 Fn 𝑉𝐵 Fn 𝑉) ∧ (𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑉)) → ((𝐴𝑓 𝐵)‘𝑥) = ((𝐴𝑥) (𝐵𝑥)))
9592, 93, 94syl2anc 691 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → ((𝐴𝑓 𝐵)‘𝑥) = ((𝐴𝑥) (𝐵𝑥)))
9677a1i 11 . . . . . . . . . 10 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → = (+g𝑆))
9796oveqd 6566 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → ((𝐴𝑥) (𝐵𝑥)) = ((𝐴𝑥)(+g𝑆)(𝐵𝑥)))
9895, 97eqtrd 2644 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → ((𝐴𝑓 𝐵)‘𝑥) = ((𝐴𝑥)(+g𝑆)(𝐵𝑥)))
9998oveq1d 6564 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑓 𝐵)‘𝑥)( ·𝑠𝑀)𝑥) = (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥))
1009adantr 480 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝑀 ∈ LMod)
101100adantr 480 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → 𝑀 ∈ LMod)
10215ad2antrl 760 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑥𝑉 → (𝐴𝑥) ∈ 𝑅))
103102imp 444 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (𝐴𝑥) ∈ 𝑅)
10432ad2antll 761 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑥𝑉 → (𝐵𝑥) ∈ 𝑅))
105104imp 444 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (𝐵𝑥) ∈ 𝑅)
10621adantr 480 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑥𝑉𝑥 ∈ (Base‘𝑀)))
107106imp 444 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → 𝑥 ∈ (Base‘𝑀))
108 eqid 2610 . . . . . . . . 9 (Scalar‘𝑀) = (Scalar‘𝑀)
10924fveq2i 6106 . . . . . . . . 9 (+g𝑆) = (+g‘(Scalar‘𝑀))
1101, 3, 108, 25, 67, 109lmodvsdir 18710 . . . . . . . 8 ((𝑀 ∈ LMod ∧ ((𝐴𝑥) ∈ 𝑅 ∧ (𝐵𝑥) ∈ 𝑅𝑥 ∈ (Base‘𝑀))) → (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
111101, 103, 105, 107, 110syl13anc 1320 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑥)(+g𝑆)(𝐵𝑥))( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
11299, 111eqtrd 2644 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) ∧ 𝑥𝑉) → (((𝐴𝑓 𝐵)‘𝑥)( ·𝑠𝑀)𝑥) = (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))
113112mpteq2dva 4672 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑥𝑉 ↦ (((𝐴𝑓 𝐵)‘𝑥)( ·𝑠𝑀)𝑥)) = (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
114113oveq2d 6565 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑓 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
1151143adant3 1074 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑓 𝐵)‘𝑥)( ·𝑠𝑀)𝑥))) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
11689, 115eqtrd 2644 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴𝑓 𝐵)( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ (((𝐴𝑥)( ·𝑠𝑀)𝑥) + ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
117 lincsum.x . . . 4 𝑋 = (𝐴( linC ‘𝑀)𝑉)
118 lincsum.y . . . 4 𝑌 = (𝐵( linC ‘𝑀)𝑉)
119117, 118oveq12i 6561 . . 3 (𝑋 + 𝑌) = ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉))
12067oveq1i 6559 . . . . . . . . 9 (𝑅𝑚 𝑉) = ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)
121120eleq2i 2680 . . . . . . . 8 (𝐴 ∈ (𝑅𝑚 𝑉) ↔ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
122121biimpi 205 . . . . . . 7 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
123122ad2antrl 760 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
124 lincval 41992 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐴 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))))
125100, 123, 50, 124syl3anc 1318 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐴( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))))
126120eleq2i 2680 . . . . . . . 8 (𝐵 ∈ (𝑅𝑚 𝑉) ↔ 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
127126biimpi 205 . . . . . . 7 (𝐵 ∈ (𝑅𝑚 𝑉) → 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
128127ad2antll 761 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
129 lincval 41992 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐵 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐵( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
130100, 128, 50, 129syl3anc 1318 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → (𝐵( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥))))
131125, 130oveq12d 6567 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉))) → ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
1321313adant3 1074 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → ((𝐴( linC ‘𝑀)𝑉) + (𝐵( linC ‘𝑀)𝑉)) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
133119, 132syl5eq 2656 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝑀 Σg (𝑥𝑉 ↦ ((𝐴𝑥)( ·𝑠𝑀)𝑥))) + (𝑀 Σg (𝑥𝑉 ↦ ((𝐵𝑥)( ·𝑠𝑀)𝑥)))))
13449, 116, 1333eqtr4rd 2655 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑆) ∧ 𝐵 finSupp (0g𝑆))) → (𝑋 + 𝑌) = ((𝐴𝑓 𝐵)( linC ‘𝑀)𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Grpcgrp 17245  CMndccmn 18016  LModclmod 18686   linC clinc 41987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-linc 41989
This theorem is referenced by:  lincsumcl  42014
  Copyright terms: Public domain W3C validator