MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppco2 Structured version   Visualization version   GIF version

Theorem fsuppco2 8191
Description: The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 8192 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
fsuppco2.z (𝜑𝑍𝑊)
fsuppco2.f (𝜑𝐹:𝐴𝐵)
fsuppco2.g (𝜑𝐺:𝐵𝐵)
fsuppco2.a (𝜑𝐴𝑈)
fsuppco2.b (𝜑𝐵𝑉)
fsuppco2.n (𝜑𝐹 finSupp 𝑍)
fsuppco2.i (𝜑 → (𝐺𝑍) = 𝑍)
Assertion
Ref Expression
fsuppco2 (𝜑 → (𝐺𝐹) finSupp 𝑍)

Proof of Theorem fsuppco2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsuppco2.g . . . 4 (𝜑𝐺:𝐵𝐵)
2 ffun 5961 . . . 4 (𝐺:𝐵𝐵 → Fun 𝐺)
31, 2syl 17 . . 3 (𝜑 → Fun 𝐺)
4 fsuppco2.f . . . 4 (𝜑𝐹:𝐴𝐵)
5 ffun 5961 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
64, 5syl 17 . . 3 (𝜑 → Fun 𝐹)
7 funco 5842 . . 3 ((Fun 𝐺 ∧ Fun 𝐹) → Fun (𝐺𝐹))
83, 6, 7syl2anc 691 . 2 (𝜑 → Fun (𝐺𝐹))
9 fsuppco2.n . . . 4 (𝜑𝐹 finSupp 𝑍)
109fsuppimpd 8165 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
11 fco 5971 . . . . 5 ((𝐺:𝐵𝐵𝐹:𝐴𝐵) → (𝐺𝐹):𝐴𝐵)
121, 4, 11syl2anc 691 . . . 4 (𝜑 → (𝐺𝐹):𝐴𝐵)
13 eldifi 3694 . . . . . 6 (𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍)) → 𝑥𝐴)
14 fvco3 6185 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
154, 13, 14syl2an 493 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
16 ssid 3587 . . . . . . . 8 (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍)
1716a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐹 supp 𝑍))
18 fsuppco2.a . . . . . . 7 (𝜑𝐴𝑈)
19 fsuppco2.z . . . . . . 7 (𝜑𝑍𝑊)
204, 17, 18, 19suppssr 7213 . . . . . 6 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐹𝑥) = 𝑍)
2120fveq2d 6107 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺‘(𝐹𝑥)) = (𝐺𝑍))
22 fsuppco2.i . . . . . 6 (𝜑 → (𝐺𝑍) = 𝑍)
2322adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → (𝐺𝑍) = 𝑍)
2415, 21, 233eqtrd 2648 . . . 4 ((𝜑𝑥 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) → ((𝐺𝐹)‘𝑥) = 𝑍)
2512, 24suppss 7212 . . 3 (𝜑 → ((𝐺𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍))
26 ssfi 8065 . . 3 (((𝐹 supp 𝑍) ∈ Fin ∧ ((𝐺𝐹) supp 𝑍) ⊆ (𝐹 supp 𝑍)) → ((𝐺𝐹) supp 𝑍) ∈ Fin)
2710, 25, 26syl2anc 691 . 2 (𝜑 → ((𝐺𝐹) supp 𝑍) ∈ Fin)
28 fsuppco2.b . . . . 5 (𝜑𝐵𝑉)
29 fex 6394 . . . . 5 ((𝐺:𝐵𝐵𝐵𝑉) → 𝐺 ∈ V)
301, 28, 29syl2anc 691 . . . 4 (𝜑𝐺 ∈ V)
31 fex 6394 . . . . 5 ((𝐹:𝐴𝐵𝐴𝑈) → 𝐹 ∈ V)
324, 18, 31syl2anc 691 . . . 4 (𝜑𝐹 ∈ V)
33 coexg 7010 . . . 4 ((𝐺 ∈ V ∧ 𝐹 ∈ V) → (𝐺𝐹) ∈ V)
3430, 32, 33syl2anc 691 . . 3 (𝜑 → (𝐺𝐹) ∈ V)
35 isfsupp 8162 . . 3 (((𝐺𝐹) ∈ V ∧ 𝑍𝑊) → ((𝐺𝐹) finSupp 𝑍 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 𝑍) ∈ Fin)))
3634, 19, 35syl2anc 691 . 2 (𝜑 → ((𝐺𝐹) finSupp 𝑍 ↔ (Fun (𝐺𝐹) ∧ ((𝐺𝐹) supp 𝑍) ∈ Fin)))
378, 27, 36mpbir2and 959 1 (𝜑 → (𝐺𝐹) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  wss 3540   class class class wbr 4583  ccom 5042  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549   supp csupp 7182  Fincfn 7841   finSupp cfsupp 8158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-supp 7183  df-er 7629  df-en 7842  df-fin 7845  df-fsupp 8159
This theorem is referenced by:  gsumzinv  18168  gsumsub  18171
  Copyright terms: Public domain W3C validator