Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzinv Structured version   Visualization version   GIF version

Theorem gsumzinv 18168
 Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzinv.b 𝐵 = (Base‘𝐺)
gsumzinv.0 0 = (0g𝐺)
gsumzinv.z 𝑍 = (Cntz‘𝐺)
gsumzinv.i 𝐼 = (invg𝐺)
gsumzinv.g (𝜑𝐺 ∈ Grp)
gsumzinv.a (𝜑𝐴𝑉)
gsumzinv.f (𝜑𝐹:𝐴𝐵)
gsumzinv.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzinv.n (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzinv (𝜑 → (𝐺 Σg (𝐼𝐹)) = (𝐼‘(𝐺 Σg 𝐹)))

Proof of Theorem gsumzinv
StepHypRef Expression
1 gsumzinv.b . . 3 𝐵 = (Base‘𝐺)
2 gsumzinv.0 . . 3 0 = (0g𝐺)
3 gsumzinv.z . . 3 𝑍 = (Cntz‘𝐺)
4 eqid 2610 . . 3 (oppg𝐺) = (oppg𝐺)
5 gsumzinv.g . . . 4 (𝜑𝐺 ∈ Grp)
6 grpmnd 17252 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ Mnd)
8 gsumzinv.a . . 3 (𝜑𝐴𝑉)
9 gsumzinv.i . . . . . 6 𝐼 = (invg𝐺)
101, 9grpinvf 17289 . . . . 5 (𝐺 ∈ Grp → 𝐼:𝐵𝐵)
115, 10syl 17 . . . 4 (𝜑𝐼:𝐵𝐵)
12 gsumzinv.f . . . 4 (𝜑𝐹:𝐴𝐵)
13 fco 5971 . . . 4 ((𝐼:𝐵𝐵𝐹:𝐴𝐵) → (𝐼𝐹):𝐴𝐵)
1411, 12, 13syl2anc 691 . . 3 (𝜑 → (𝐼𝐹):𝐴𝐵)
154, 9invoppggim 17613 . . . . . 6 (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg𝐺)))
16 gimghm 17529 . . . . . 6 (𝐼 ∈ (𝐺 GrpIso (oppg𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg𝐺)))
17 ghmmhm 17493 . . . . . 6 (𝐼 ∈ (𝐺 GrpHom (oppg𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg𝐺)))
185, 15, 16, 174syl 19 . . . . 5 (𝜑𝐼 ∈ (𝐺 MndHom (oppg𝐺)))
19 gsumzinv.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
20 eqid 2610 . . . . . 6 (Cntz‘(oppg𝐺)) = (Cntz‘(oppg𝐺))
213, 20cntzmhm2 17595 . . . . 5 ((𝐼 ∈ (𝐺 MndHom (oppg𝐺)) ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐼 “ ran 𝐹) ⊆ ((Cntz‘(oppg𝐺))‘(𝐼 “ ran 𝐹)))
2218, 19, 21syl2anc 691 . . . 4 (𝜑 → (𝐼 “ ran 𝐹) ⊆ ((Cntz‘(oppg𝐺))‘(𝐼 “ ran 𝐹)))
23 rnco2 5559 . . . 4 ran (𝐼𝐹) = (𝐼 “ ran 𝐹)
2423fveq2i 6106 . . . . 5 (𝑍‘ran (𝐼𝐹)) = (𝑍‘(𝐼 “ ran 𝐹))
254, 3oppgcntz 17617 . . . . 5 (𝑍‘(𝐼 “ ran 𝐹)) = ((Cntz‘(oppg𝐺))‘(𝐼 “ ran 𝐹))
2624, 25eqtri 2632 . . . 4 (𝑍‘ran (𝐼𝐹)) = ((Cntz‘(oppg𝐺))‘(𝐼 “ ran 𝐹))
2722, 23, 263sstr4g 3609 . . 3 (𝜑 → ran (𝐼𝐹) ⊆ (𝑍‘ran (𝐼𝐹)))
28 fvex 6113 . . . . . 6 (0g𝐺) ∈ V
292, 28eqeltri 2684 . . . . 5 0 ∈ V
3029a1i 11 . . . 4 (𝜑0 ∈ V)
31 fvex 6113 . . . . . 6 (Base‘𝐺) ∈ V
321, 31eqeltri 2684 . . . . 5 𝐵 ∈ V
3332a1i 11 . . . 4 (𝜑𝐵 ∈ V)
34 gsumzinv.n . . . 4 (𝜑𝐹 finSupp 0 )
352, 9grpinvid 17299 . . . . 5 (𝐺 ∈ Grp → (𝐼0 ) = 0 )
365, 35syl 17 . . . 4 (𝜑 → (𝐼0 ) = 0 )
3730, 12, 11, 8, 33, 34, 36fsuppco2 8191 . . 3 (𝜑 → (𝐼𝐹) finSupp 0 )
381, 2, 3, 4, 7, 8, 14, 27, 37gsumzoppg 18167 . 2 (𝜑 → ((oppg𝐺) Σg (𝐼𝐹)) = (𝐺 Σg (𝐼𝐹)))
394oppgmnd 17607 . . . 4 (𝐺 ∈ Mnd → (oppg𝐺) ∈ Mnd)
407, 39syl 17 . . 3 (𝜑 → (oppg𝐺) ∈ Mnd)
411, 3, 7, 40, 8, 18, 12, 19, 2, 34gsumzmhm 18160 . 2 (𝜑 → ((oppg𝐺) Σg (𝐼𝐹)) = (𝐼‘(𝐺 Σg 𝐹)))
4238, 41eqtr3d 2646 1 (𝜑 → (𝐺 Σg (𝐼𝐹)) = (𝐼‘(𝐺 Σg 𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540   class class class wbr 4583  ran crn 5039   “ cima 5041   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   finSupp cfsupp 8158  Basecbs 15695  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117   MndHom cmhm 17156  Grpcgrp 17245  invgcminusg 17246   GrpHom cghm 17480   GrpIso cgim 17522  Cntzccntz 17571  oppgcoppg 17598 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-ghm 17481  df-gim 17524  df-cntz 17573  df-oppg 17599  df-cmn 18018 This theorem is referenced by:  dprdfinv  18241
 Copyright terms: Public domain W3C validator