Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpfsupp Structured version   Visualization version   GIF version

Theorem mndpfsupp 41951
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.)
Hypothesis
Ref Expression
mndpsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpfsupp (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → (𝐴𝑓 (+g𝑀)𝐵) finSupp (0g𝑀))

Proof of Theorem mndpfsupp
StepHypRef Expression
1 elmapfn 7766 . . . . . 6 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴 Fn 𝑉)
21adantr 480 . . . . 5 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) → 𝐴 Fn 𝑉)
323ad2ant2 1076 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → 𝐴 Fn 𝑉)
4 elmapfn 7766 . . . . . 6 (𝐵 ∈ (𝑅𝑚 𝑉) → 𝐵 Fn 𝑉)
54adantl 481 . . . . 5 ((𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) → 𝐵 Fn 𝑉)
653ad2ant2 1076 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → 𝐵 Fn 𝑉)
7 simp1r 1079 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → 𝑉𝑋)
8 inidm 3784 . . . 4 (𝑉𝑉) = 𝑉
93, 6, 7, 7, 8offn 6806 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → (𝐴𝑓 (+g𝑀)𝐵) Fn 𝑉)
10 fnfun 5902 . . 3 ((𝐴𝑓 (+g𝑀)𝐵) Fn 𝑉 → Fun (𝐴𝑓 (+g𝑀)𝐵))
119, 10syl 17 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → Fun (𝐴𝑓 (+g𝑀)𝐵))
12 id 22 . . . . 5 (𝐴 finSupp (0g𝑀) → 𝐴 finSupp (0g𝑀))
1312fsuppimpd 8165 . . . 4 (𝐴 finSupp (0g𝑀) → (𝐴 supp (0g𝑀)) ∈ Fin)
14 id 22 . . . . 5 (𝐵 finSupp (0g𝑀) → 𝐵 finSupp (0g𝑀))
1514fsuppimpd 8165 . . . 4 (𝐵 finSupp (0g𝑀) → (𝐵 supp (0g𝑀)) ∈ Fin)
1613, 15anim12i 588 . . 3 ((𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀)) → ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin))
17 mndpsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
1817mndpsuppfi 41950 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
1916, 18syl3an3 1353 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
20 ovex 6577 . . 3 (𝐴𝑓 (+g𝑀)𝐵) ∈ V
21 fvex 6113 . . . 4 (0g𝑀) ∈ V
2221a1i 11 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → (0g𝑀) ∈ V)
23 isfsupp 8162 . . 3 (((𝐴𝑓 (+g𝑀)𝐵) ∈ V ∧ (0g𝑀) ∈ V) → ((𝐴𝑓 (+g𝑀)𝐵) finSupp (0g𝑀) ↔ (Fun (𝐴𝑓 (+g𝑀)𝐵) ∧ ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)))
2420, 22, 23sylancr 694 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → ((𝐴𝑓 (+g𝑀)𝐵) finSupp (0g𝑀) ↔ (Fun (𝐴𝑓 (+g𝑀)𝐵) ∧ ((𝐴𝑓 (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)))
2511, 19, 24mpbir2and 959 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅𝑚 𝑉) ∧ 𝐵 ∈ (𝑅𝑚 𝑉)) ∧ (𝐴 finSupp (0g𝑀) ∧ 𝐵 finSupp (0g𝑀))) → (𝐴𝑓 (+g𝑀)𝐵) finSupp (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173   class class class wbr 4583  Fun wfun 5798   Fn wfn 5799  cfv 5804  (class class class)co 6549  𝑓 cof 6793   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-fin 7845  df-fsupp 8159  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118
This theorem is referenced by:  lincsumcl  42014
  Copyright terms: Public domain W3C validator