MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp Structured version   Visualization version   GIF version

Theorem dvntaylp 23929
Description: The 𝑀-th derivative of the Taylor polynomial is the Taylor polynomial of the 𝑀-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvntaylp.f (𝜑𝐹:𝐴⟶ℂ)
dvntaylp.a (𝜑𝐴𝑆)
dvntaylp.m (𝜑𝑀 ∈ ℕ0)
dvntaylp.n (𝜑𝑁 ∈ ℕ0)
dvntaylp.b (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
Assertion
Ref Expression
dvntaylp (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))

Proof of Theorem dvntaylp
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvntaylp.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
2 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
31, 2syl6eleq 2698 . . . 4 (𝜑𝑀 ∈ (ℤ‘0))
4 eluzfz2b 12221 . . . 4 (𝑀 ∈ (ℤ‘0) ↔ 𝑀 ∈ (0...𝑀))
53, 4sylib 207 . . 3 (𝜑𝑀 ∈ (0...𝑀))
6 fveq2 6103 . . . . . 6 (𝑚 = 0 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0))
7 fveq2 6103 . . . . . . . 8 (𝑚 = 0 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘0))
87oveq2d 6565 . . . . . . 7 (𝑚 = 0 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)))
9 oveq2 6557 . . . . . . . 8 (𝑚 = 0 → (𝑀𝑚) = (𝑀 − 0))
109oveq2d 6565 . . . . . . 7 (𝑚 = 0 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − 0)))
11 eqidd 2611 . . . . . . 7 (𝑚 = 0 → 𝐵 = 𝐵)
128, 10, 11oveq123d 6570 . . . . . 6 (𝑚 = 0 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
136, 12eqeq12d 2625 . . . . 5 (𝑚 = 0 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
1413imbi2d 329 . . . 4 (𝑚 = 0 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))))
15 fveq2 6103 . . . . . 6 (𝑚 = 𝑛 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛))
16 fveq2 6103 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑛))
1716oveq2d 6565 . . . . . . 7 (𝑚 = 𝑛 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛)))
18 oveq2 6557 . . . . . . . 8 (𝑚 = 𝑛 → (𝑀𝑚) = (𝑀𝑛))
1918oveq2d 6565 . . . . . . 7 (𝑚 = 𝑛 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑛)))
20 eqidd 2611 . . . . . . 7 (𝑚 = 𝑛𝐵 = 𝐵)
2117, 19, 20oveq123d 6570 . . . . . 6 (𝑚 = 𝑛 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
2215, 21eqeq12d 2625 . . . . 5 (𝑚 = 𝑛 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
2322imbi2d 329 . . . 4 (𝑚 = 𝑛 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
24 fveq2 6103 . . . . . 6 (𝑚 = (𝑛 + 1) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)))
25 fveq2 6103 . . . . . . . 8 (𝑚 = (𝑛 + 1) → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))
2625oveq2d 6565 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
27 oveq2 6557 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑀𝑚) = (𝑀 − (𝑛 + 1)))
2827oveq2d 6565 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀 − (𝑛 + 1))))
29 eqidd 2611 . . . . . . 7 (𝑚 = (𝑛 + 1) → 𝐵 = 𝐵)
3026, 28, 29oveq123d 6570 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
3124, 30eqeq12d 2625 . . . . 5 (𝑚 = (𝑛 + 1) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
3231imbi2d 329 . . . 4 (𝑚 = (𝑛 + 1) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
33 fveq2 6103 . . . . . 6 (𝑚 = 𝑀 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀))
34 fveq2 6103 . . . . . . . 8 (𝑚 = 𝑀 → ((𝑆 D𝑛 𝐹)‘𝑚) = ((𝑆 D𝑛 𝐹)‘𝑀))
3534oveq2d 6565 . . . . . . 7 (𝑚 = 𝑀 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚)) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀)))
36 oveq2 6557 . . . . . . . 8 (𝑚 = 𝑀 → (𝑀𝑚) = (𝑀𝑀))
3736oveq2d 6565 . . . . . . 7 (𝑚 = 𝑀 → (𝑁 + (𝑀𝑚)) = (𝑁 + (𝑀𝑀)))
38 eqidd 2611 . . . . . . 7 (𝑚 = 𝑀𝐵 = 𝐵)
3935, 37, 38oveq123d 6570 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
4033, 39eqeq12d 2625 . . . . 5 (𝑚 = 𝑀 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵) ↔ ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
4140imbi2d 329 . . . 4 (𝑚 = 𝑀 → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑚) = ((𝑁 + (𝑀𝑚))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑚))𝐵)) ↔ (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))))
42 ssid 3587 . . . . . . . 8 ℂ ⊆ ℂ
4342a1i 11 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
44 mapsspm 7777 . . . . . . . 8 (ℂ ↑𝑚 ℂ) ⊆ (ℂ ↑pm ℂ)
45 dvntaylp.s . . . . . . . . . 10 (𝜑𝑆 ∈ {ℝ, ℂ})
46 dvntaylp.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℂ)
47 dvntaylp.a . . . . . . . . . 10 (𝜑𝐴𝑆)
48 dvntaylp.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
4948, 1nn0addcld 11232 . . . . . . . . . 10 (𝜑 → (𝑁 + 𝑀) ∈ ℕ0)
50 dvntaylp.b . . . . . . . . . 10 (𝜑𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
51 eqid 2610 . . . . . . . . . 10 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵)
5245, 46, 47, 49, 50, 51taylpf 23924 . . . . . . . . 9 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
53 cnex 9896 . . . . . . . . . 10 ℂ ∈ V
5453, 53elmap 7772 . . . . . . . . 9 (((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑𝑚 ℂ) ↔ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵):ℂ⟶ℂ)
5552, 54sylibr 223 . . . . . . . 8 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑𝑚 ℂ))
5644, 55sseldi 3566 . . . . . . 7 (𝜑 → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
57 dvn0 23493 . . . . . . 7 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
5843, 56, 57syl2anc 691 . . . . . 6 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
59 recnprss 23474 . . . . . . . . . 10 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
6045, 59syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
6153a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ∈ V)
62 elpm2r 7761 . . . . . . . . . 10 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
6361, 45, 46, 47, 62syl22anc 1319 . . . . . . . . 9 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
64 dvn0 23493 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6560, 63, 64syl2anc 691 . . . . . . . 8 (𝜑 → ((𝑆 D𝑛 𝐹)‘0) = 𝐹)
6665oveq2d 6565 . . . . . . 7 (𝜑 → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0)) = (𝑆 Tayl 𝐹))
671nn0cnd 11230 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
6867subid1d 10260 . . . . . . . 8 (𝜑 → (𝑀 − 0) = 𝑀)
6968oveq2d 6565 . . . . . . 7 (𝜑 → (𝑁 + (𝑀 − 0)) = (𝑁 + 𝑀))
70 eqidd 2611 . . . . . . 7 (𝜑𝐵 = 𝐵)
7166, 69, 70oveq123d 6570 . . . . . 6 (𝜑 → ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵) = ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))
7258, 71eqtr4d 2647 . . . . 5 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵))
7372a1i 11 . . . 4 (𝑀 ∈ (ℤ‘0) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘0) = ((𝑁 + (𝑀 − 0))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘0))𝐵)))
74 oveq2 6557 . . . . . . 7 (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
7542a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
7656adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ))
77 elfzouz 12343 . . . . . . . . . . 11 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (ℤ‘0))
7877adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (ℤ‘0))
7978, 2syl6eleqr 2699 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℕ0)
80 dvnp1 23494 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵) ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8175, 76, 79, 80syl3anc 1318 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)))
8245adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ∈ {ℝ, ℂ})
8363adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
84 dvnf 23496 . . . . . . . . . . 11 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
8582, 83, 79, 84syl3anc 1318 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘𝑛):dom ((𝑆 D𝑛 𝐹)‘𝑛)⟶ℂ)
86 dvnbss 23497 . . . . . . . . . . . . 13 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
8782, 83, 79, 86syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
88 fdm 5964 . . . . . . . . . . . . . 14 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
8946, 88syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = 𝐴)
9089adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → dom 𝐹 = 𝐴)
9187, 90sseqtrd 3604 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝐴)
9247adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐴𝑆)
9391, 92sstrd 3578 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 𝐹)‘𝑛) ⊆ 𝑆)
9448adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℕ0)
95 fzofzp1 12431 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^𝑀) → (𝑛 + 1) ∈ (0...𝑀))
9695adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + 1) ∈ (0...𝑀))
97 fznn0sub 12244 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (0...𝑀) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9896, 97syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℕ0)
9994, 98nn0addcld 11232 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀 − (𝑛 + 1))) ∈ ℕ0)
10050adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
101 elfzofz 12354 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑀) → 𝑛 ∈ (0...𝑀))
102101adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ (0...𝑀))
103 fznn0sub 12244 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝑀) → (𝑀𝑛) ∈ ℕ0)
104102, 103syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℕ0)
10594, 104nn0addcld 11232 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑀𝑛)) ∈ ℕ0)
106 dvnadd 23498 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑛 ∈ ℕ0 ∧ (𝑁 + (𝑀𝑛)) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10782, 83, 79, 105, 106syl22anc 1319 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
10848nn0cnd 11230 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
109108adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑁 ∈ ℂ)
11098nn0cnd 11230 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀 − (𝑛 + 1)) ∈ ℂ)
111 1cnd 9935 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → 1 ∈ ℂ)
112109, 110, 111addassd 9941 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)))
11367adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑀 ∈ ℂ)
11479nn0cnd 11230 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑛 ∈ ℂ)
115113, 114, 111nppcan2d 10297 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑀 − (𝑛 + 1)) + 1) = (𝑀𝑛))
116115oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + ((𝑀 − (𝑛 + 1)) + 1)) = (𝑁 + (𝑀𝑛)))
117112, 116eqtrd 2644 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1))) + 1) = (𝑁 + (𝑀𝑛)))
118117fveq2d 6107 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘(𝑁 + (𝑀𝑛))))
119114, 113pncan3d 10274 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑛 + (𝑀𝑛)) = 𝑀)
120119oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑁 + 𝑀))
121113, 114subcld 10271 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑀𝑛) ∈ ℂ)
122109, 114, 121add12d 10141 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + (𝑛 + (𝑀𝑛))) = (𝑛 + (𝑁 + (𝑀𝑛))))
123120, 122eqtr3d 2646 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑁 + 𝑀) = (𝑛 + (𝑁 + (𝑀𝑛))))
124123fveq2d 6107 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑛 + (𝑁 + (𝑀𝑛)))))
125107, 118, 1243eqtr4d 2654 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
126125dmeqd 5248 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)) = dom ((𝑆 D𝑛 𝐹)‘(𝑁 + 𝑀)))
127100, 126eleqtrrd 2691 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝐵 ∈ dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑛))‘((𝑁 + (𝑀 − (𝑛 + 1))) + 1)))
12882, 85, 93, 99, 127dvtaylp 23928 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵))
129117oveq1d 6564 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))
130129oveq2d 6565 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → (ℂ D (((𝑁 + (𝑀 − (𝑛 + 1))) + 1)(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
13160adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑀)) → 𝑆 ⊆ ℂ)
132 dvnp1 23494 . . . . . . . . . . . . 13 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
133131, 83, 79, 132syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))
134133oveq2d 6565 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))) = (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))))
135134eqcomd 2616 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0..^𝑀)) → (𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛))) = (𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1))))
136135oveqd 6566 . . . . . . . . 9 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑛)))𝐵) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))
137128, 130, 1363eqtr3rd 2653 . . . . . . . 8 ((𝜑𝑛 ∈ (0..^𝑀)) → ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)))
13881, 137eqeq12d 2625 . . . . . . 7 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵) ↔ (ℂ D ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛)) = (ℂ D ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵))))
13974, 138syl5ibr 235 . . . . . 6 ((𝜑𝑛 ∈ (0..^𝑀)) → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵)))
140139expcom 450 . . . . 5 (𝑛 ∈ (0..^𝑀) → (𝜑 → (((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵) → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
141140a2d 29 . . . 4 (𝑛 ∈ (0..^𝑀) → ((𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑛) = ((𝑁 + (𝑀𝑛))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑛))𝐵)) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘(𝑛 + 1)) = ((𝑁 + (𝑀 − (𝑛 + 1)))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘(𝑛 + 1)))𝐵))))
14214, 23, 32, 41, 73, 141fzind2 12448 . . 3 (𝑀 ∈ (0...𝑀) → (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵)))
1435, 142mpcom 37 . 2 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
14467subidd 10259 . . . . 5 (𝜑 → (𝑀𝑀) = 0)
145144oveq2d 6565 . . . 4 (𝜑 → (𝑁 + (𝑀𝑀)) = (𝑁 + 0))
146108addid1d 10115 . . . 4 (𝜑 → (𝑁 + 0) = 𝑁)
147145, 146eqtrd 2644 . . 3 (𝜑 → (𝑁 + (𝑀𝑀)) = 𝑁)
148147oveq1d 6564 . 2 (𝜑 → ((𝑁 + (𝑀𝑀))(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
149143, 148eqtrd 2644 1 (𝜑 → ((ℂ D𝑛 ((𝑁 + 𝑀)(𝑆 Tayl 𝐹)𝐵))‘𝑀) = (𝑁(𝑆 Tayl ((𝑆 D𝑛 𝐹)‘𝑀))𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  {cpr 4127  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  pm cpm 7745  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  cmin 10145  0cn0 11169  cuz 11563  ...cfz 12197  ..^cfzo 12334   D cdv 23433   D𝑛 cdvn 23434   Tayl ctayl 23911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tsms 21740  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-dvn 23438  df-tayl 23913
This theorem is referenced by:  dvntaylp0  23930  taylthlem1  23931
  Copyright terms: Public domain W3C validator