MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp Unicode version

Theorem dvntaylp 20240
Description: The  M-th derivative of the Taylor polynomial is the Taylor polynomial of the  M-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvntaylp.f  |-  ( ph  ->  F : A --> CC )
dvntaylp.a  |-  ( ph  ->  A  C_  S )
dvntaylp.m  |-  ( ph  ->  M  e.  NN0 )
dvntaylp.n  |-  ( ph  ->  N  e.  NN0 )
dvntaylp.b  |-  ( ph  ->  B  e.  dom  (
( S  D n F ) `  ( N  +  M )
) )
Assertion
Ref Expression
dvntaylp  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( N ( S Tayl  ( ( S  D n F ) `  M ) ) B ) )

Proof of Theorem dvntaylp
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvntaylp.m . . . . 5  |-  ( ph  ->  M  e.  NN0 )
2 nn0uz 10476 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2494 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
4 eluzfz2b 11022 . . . 4  |-  ( M  e.  ( ZZ>= `  0
)  <->  M  e.  (
0 ... M ) )
53, 4sylib 189 . . 3  |-  ( ph  ->  M  e.  ( 0 ... M ) )
6 fveq2 5687 . . . . . 6  |-  ( m  =  0  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) ` 
0 ) )
7 fveq2 5687 . . . . . . . 8  |-  ( m  =  0  ->  (
( S  D n F ) `  m
)  =  ( ( S  D n F ) `  0 ) )
87oveq2d 6056 . . . . . . 7  |-  ( m  =  0  ->  ( S Tayl  ( ( S  D n F ) `  m
) )  =  ( S Tayl  ( ( S  D n F ) `
 0 ) ) )
9 oveq2 6048 . . . . . . . 8  |-  ( m  =  0  ->  ( M  -  m )  =  ( M  - 
0 ) )
109oveq2d 6056 . . . . . . 7  |-  ( m  =  0  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  0 ) ) )
11 eqidd 2405 . . . . . . 7  |-  ( m  =  0  ->  B  =  B )
128, 10, 11oveq123d 6061 . . . . . 6  |-  ( m  =  0  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  D n F ) `  m
) ) B )  =  ( ( N  +  ( M  - 
0 ) ) ( S Tayl  ( ( S  D n F ) `
 0 ) ) B ) )
136, 12eqeq12d 2418 . . . . 5  |-  ( m  =  0  ->  (
( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  D n F ) `  m ) ) B )  <->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) ` 
0 )  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  (
( S  D n F ) `  0
) ) B ) ) )
1413imbi2d 308 . . . 4  |-  ( m  =  0  ->  (
( ph  ->  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  D n F ) `  m
) ) B ) )  <->  ( ph  ->  ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  0 )  =  ( ( N  +  ( M  - 
0 ) ) ( S Tayl  ( ( S  D n F ) `
 0 ) ) B ) ) ) )
15 fveq2 5687 . . . . . 6  |-  ( m  =  n  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n ) )
16 fveq2 5687 . . . . . . . 8  |-  ( m  =  n  ->  (
( S  D n F ) `  m
)  =  ( ( S  D n F ) `  n ) )
1716oveq2d 6056 . . . . . . 7  |-  ( m  =  n  ->  ( S Tayl  ( ( S  D n F ) `  m
) )  =  ( S Tayl  ( ( S  D n F ) `
 n ) ) )
18 oveq2 6048 . . . . . . . 8  |-  ( m  =  n  ->  ( M  -  m )  =  ( M  -  n ) )
1918oveq2d 6056 . . . . . . 7  |-  ( m  =  n  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  n ) ) )
20 eqidd 2405 . . . . . . 7  |-  ( m  =  n  ->  B  =  B )
2117, 19, 20oveq123d 6061 . . . . . 6  |-  ( m  =  n  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  D n F ) `  m
) ) B )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B ) )
2215, 21eqeq12d 2418 . . . . 5  |-  ( m  =  n  ->  (
( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  D n F ) `  m ) ) B )  <->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B ) ) )
2322imbi2d 308 . . . 4  |-  ( m  =  n  ->  (
( ph  ->  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  D n F ) `  m
) ) B ) )  <->  ( ph  ->  ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B ) ) ) )
24 fveq2 5687 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) ) )
25 fveq2 5687 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  (
( S  D n F ) `  m
)  =  ( ( S  D n F ) `  ( n  +  1 ) ) )
2625oveq2d 6056 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  ( S Tayl  ( ( S  D n F ) `  m
) )  =  ( S Tayl  ( ( S  D n F ) `
 ( n  + 
1 ) ) ) )
27 oveq2 6048 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  ( M  -  m )  =  ( M  -  ( n  +  1
) ) )
2827oveq2d 6056 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  ( n  +  1 ) ) ) )
29 eqidd 2405 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  B  =  B )
3026, 28, 29oveq123d 6061 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  D n F ) `  m
) ) B )  =  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( ( S  D n F ) `
 ( n  + 
1 ) ) ) B ) )
3124, 30eqeq12d 2418 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  D n F ) `  m ) ) B )  <->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  D n F ) `  (
n  +  1 ) ) ) B ) ) )
3231imbi2d 308 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  D n F ) `  m
) ) B ) )  <->  ( ph  ->  ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  ( n  +  1 ) )  =  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( ( S  D n F ) `
 ( n  + 
1 ) ) ) B ) ) ) )
33 fveq2 5687 . . . . . 6  |-  ( m  =  M  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M ) )
34 fveq2 5687 . . . . . . . 8  |-  ( m  =  M  ->  (
( S  D n F ) `  m
)  =  ( ( S  D n F ) `  M ) )
3534oveq2d 6056 . . . . . . 7  |-  ( m  =  M  ->  ( S Tayl  ( ( S  D n F ) `  m
) )  =  ( S Tayl  ( ( S  D n F ) `
 M ) ) )
36 oveq2 6048 . . . . . . . 8  |-  ( m  =  M  ->  ( M  -  m )  =  ( M  -  M ) )
3736oveq2d 6056 . . . . . . 7  |-  ( m  =  M  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  M ) ) )
38 eqidd 2405 . . . . . . 7  |-  ( m  =  M  ->  B  =  B )
3935, 37, 38oveq123d 6061 . . . . . 6  |-  ( m  =  M  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  D n F ) `  m
) ) B )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  D n F ) `
 M ) ) B ) )
4033, 39eqeq12d 2418 . . . . 5  |-  ( m  =  M  ->  (
( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  D n F ) `  m ) ) B )  <->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  (
( S  D n F ) `  M
) ) B ) ) )
4140imbi2d 308 . . . 4  |-  ( m  =  M  ->  (
( ph  ->  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  D n F ) `  m
) ) B ) )  <->  ( ph  ->  ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  M )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  D n F ) `
 M ) ) B ) ) ) )
42 ssid 3327 . . . . . . . 8  |-  CC  C_  CC
4342a1i 11 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
44 mapsspm 7006 . . . . . . . 8  |-  ( CC 
^m  CC )  C_  ( CC  ^pm  CC )
45 dvntaylp.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  { RR ,  CC } )
46 dvntaylp.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> CC )
47 dvntaylp.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  S )
48 dvntaylp.n . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
4948, 1nn0addcld 10234 . . . . . . . . . 10  |-  ( ph  ->  ( N  +  M
)  e.  NN0 )
50 dvntaylp.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  dom  (
( S  D n F ) `  ( N  +  M )
) )
51 eqid 2404 . . . . . . . . . 10  |-  ( ( N  +  M ) ( S Tayl  F ) B )  =  ( ( N  +  M
) ( S Tayl  F
) B )
5245, 46, 47, 49, 50, 51taylpf 20235 . . . . . . . . 9  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B ) : CC --> CC )
53 cnex 9027 . . . . . . . . . 10  |-  CC  e.  _V
5453, 53elmap 7001 . . . . . . . . 9  |-  ( ( ( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^m  CC ) 
<->  ( ( N  +  M ) ( S Tayl 
F ) B ) : CC --> CC )
5552, 54sylibr 204 . . . . . . . 8  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B )  e.  ( CC  ^m  CC ) )
5644, 55sseldi 3306 . . . . . . 7  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B )  e.  ( CC  ^pm  CC ) )
57 dvn0 19763 . . . . . . 7  |-  ( ( CC  C_  CC  /\  (
( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^pm  CC ) )  ->  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  0 )  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
5843, 56, 57syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
59 recnprss 19744 . . . . . . . . . 10  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
6045, 59syl 16 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
6153a1i 11 . . . . . . . . . 10  |-  ( ph  ->  CC  e.  _V )
62 elpm2r 6993 . . . . . . . . . 10  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
6361, 45, 46, 47, 62syl22anc 1185 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
64 dvn0 19763 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( S  D n F ) `  0
)  =  F )
6560, 63, 64syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( ( S  D n F ) `  0
)  =  F )
6665oveq2d 6056 . . . . . . 7  |-  ( ph  ->  ( S Tayl  ( ( S  D n F ) `  0 ) )  =  ( S Tayl 
F ) )
671nn0cnd 10232 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
6867subid1d 9356 . . . . . . . 8  |-  ( ph  ->  ( M  -  0 )  =  M )
6968oveq2d 6056 . . . . . . 7  |-  ( ph  ->  ( N  +  ( M  -  0 ) )  =  ( N  +  M ) )
70 eqidd 2405 . . . . . . 7  |-  ( ph  ->  B  =  B )
7166, 69, 70oveq123d 6061 . . . . . 6  |-  ( ph  ->  ( ( N  +  ( M  -  0
) ) ( S Tayl  ( ( S  D n F ) `  0
) ) B )  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
7258, 71eqtr4d 2439 . . . . 5  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  ( ( S  D n F ) `  0 ) ) B ) )
7372a1i 11 . . . 4  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  ( ( S  D n F ) `  0 ) ) B ) ) )
74 oveq2 6048 . . . . . . 7  |-  ( ( ( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B )  ->  ( CC  _D  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n ) )  =  ( CC  _D  (
( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B ) ) )
7542a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  CC  C_  CC )
7656adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  M ) ( S Tayl  F ) B )  e.  ( CC 
^pm  CC ) )
77 elfzouz 11099 . . . . . . . . . . 11  |-  ( n  e.  ( 0..^ M )  ->  n  e.  ( ZZ>= `  0 )
)
7877adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  (
ZZ>= `  0 ) )
7978, 2syl6eleqr 2495 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  NN0 )
80 dvnp1 19764 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  (
( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^pm  CC )  /\  n  e.  NN0 )  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( CC  _D  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n ) ) )
8175, 76, 79, 80syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( CC  _D  ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n ) ) )
8245adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  S  e.  { RR ,  CC } )
8363adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  F  e.  ( CC  ^pm  S )
)
84 dvnf 19766 . . . . . . . . . . 11  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  ( ( S  D n F ) `
 n ) : dom  ( ( S  D n F ) `
 n ) --> CC )
8582, 83, 79, 84syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n F ) `
 n ) : dom  ( ( S  D n F ) `
 n ) --> CC )
86 dvnbss 19767 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  dom  ( ( S  D n F ) `  n ) 
C_  dom  F )
8782, 83, 79, 86syl3anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  D n F ) `
 n )  C_  dom  F )
88 fdm 5554 . . . . . . . . . . . . . 14  |-  ( F : A --> CC  ->  dom 
F  =  A )
8946, 88syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  A )
9089adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  F  =  A )
9187, 90sseqtrd 3344 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  D n F ) `
 n )  C_  A )
9247adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  A  C_  S
)
9391, 92sstrd 3318 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  D n F ) `
 n )  C_  S )
9448adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  N  e.  NN0 )
95 fzofzp1 11144 . . . . . . . . . . . . 13  |-  ( n  e.  ( 0..^ M )  ->  ( n  +  1 )  e.  ( 0 ... M
) )
9695adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( n  + 
1 )  e.  ( 0 ... M ) )
97 fznn0sub 11041 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( 0 ... M )  ->  ( M  -  ( n  +  1 ) )  e.  NN0 )
9896, 97syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  ( n  +  1
) )  e.  NN0 )
9994, 98nn0addcld 10234 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( M  -  (
n  +  1 ) ) )  e.  NN0 )
10050adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  B  e.  dom  ( ( S  D n F ) `  ( N  +  M )
) )
101 elfzofz 11109 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 0..^ M )  ->  n  e.  ( 0 ... M
) )
102101adantl 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  ( 0 ... M ) )
103 fznn0sub 11041 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 0 ... M )  ->  ( M  -  n )  e.  NN0 )
104102, 103syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  n )  e.  NN0 )
10594, 104nn0addcld 10234 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( M  -  n
) )  e.  NN0 )
106 dvnadd 19768 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( n  e.  NN0  /\  ( N  +  ( M  -  n ) )  e.  NN0 )
)  ->  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( N  +  ( M  -  n ) ) )  =  ( ( S  D n F ) `
 ( n  +  ( N  +  ( M  -  n )
) ) ) )
10782, 83, 79, 105, 106syl22anc 1185 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( N  +  ( M  -  n ) ) )  =  ( ( S  D n F ) `
 ( n  +  ( N  +  ( M  -  n )
) ) ) )
10848nn0cnd 10232 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  CC )
109108adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  N  e.  CC )
11098nn0cnd 10232 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  ( n  +  1
) )  e.  CC )
111 ax-1cn 9004 . . . . . . . . . . . . . . . . 17  |-  1  e.  CC
112111a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  1  e.  CC )
113109, 110, 112addassd 9066 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 )  =  ( N  +  ( ( M  -  ( n  +  1 ) )  +  1 ) ) )
11467adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  M  e.  CC )
11579nn0cnd 10232 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  CC )
116114, 115, 112nppcan2d 9393 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( M  -  ( n  + 
1 ) )  +  1 )  =  ( M  -  n ) )
117116oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( ( M  -  ( n  +  1
) )  +  1 ) )  =  ( N  +  ( M  -  n ) ) )
118113, 117eqtrd 2436 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 )  =  ( N  +  ( M  -  n ) ) )
119118fveq2d 5691 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( N  +  ( M  -  n ) ) ) )
120115, 114pncan3d 9370 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( n  +  ( M  -  n
) )  =  M )
121120oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( n  +  ( M  -  n )
) )  =  ( N  +  M ) )
122114, 115subcld 9367 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  n )  e.  CC )
123109, 115, 122add12d 9243 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( n  +  ( M  -  n )
) )  =  ( n  +  ( N  +  ( M  -  n ) ) ) )
124121, 123eqtr3d 2438 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  M )  =  ( n  +  ( N  +  ( M  -  n ) ) ) )
125124fveq2d 5691 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n F ) `
 ( N  +  M ) )  =  ( ( S  D n F ) `  (
n  +  ( N  +  ( M  -  n ) ) ) ) )
126107, 119, 1253eqtr4d 2446 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  ( ( S  D n F ) `
 ( N  +  M ) ) )
127126dmeqd 5031 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  D n ( ( S  D n F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  dom  ( ( S  D n F ) `  ( N  +  M ) ) )
128100, 127eleqtrrd 2481 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  B  e.  dom  ( ( S  D n ( ( S  D n F ) `
 n ) ) `
 ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ) )
12982, 85, 93, 99, 128dvtaylp 20239 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( CC  _D  ( ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ( S Tayl  ( ( S  D n F ) `  n
) ) B ) )  =  ( ( N  +  ( M  -  ( n  + 
1 ) ) ) ( S Tayl  ( S  _D  ( ( S  D n F ) `
 n ) ) ) B ) )
130118oveq1d 6055 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B ) )
131130oveq2d 6056 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( CC  _D  ( ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ( S Tayl  ( ( S  D n F ) `  n
) ) B ) )  =  ( CC 
_D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B ) ) )
13260adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  S  C_  CC )
133 dvnp1 19764 . . . . . . . . . . . . 13  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  ( ( S  D n F ) `
 ( n  + 
1 ) )  =  ( S  _D  (
( S  D n F ) `  n
) ) )
134132, 83, 79, 133syl3anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  D n F ) `
 ( n  + 
1 ) )  =  ( S  _D  (
( S  D n F ) `  n
) ) )
135134oveq2d 6056 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( S Tayl  (
( S  D n F ) `  (
n  +  1 ) ) )  =  ( S Tayl  ( S  _D  ( ( S  D n F ) `  n
) ) ) )
136135eqcomd 2409 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( S Tayl  ( S  _D  ( ( S  D n F ) `
 n ) ) )  =  ( S Tayl  ( ( S  D n F ) `  (
n  +  1 ) ) ) )
137136oveqd 6057 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( S  _D  ( ( S  D n F ) `  n
) ) ) B )  =  ( ( N  +  ( M  -  ( n  + 
1 ) ) ) ( S Tayl  ( ( S  D n F ) `  ( n  +  1 ) ) ) B ) )
138129, 131, 1373eqtr3rd 2445 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( ( S  D n F ) `
 ( n  + 
1 ) ) ) B )  =  ( CC  _D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `  n ) ) B ) ) )
13981, 138eqeq12d 2418 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 ( n  + 
1 ) )  =  ( ( N  +  ( M  -  (
n  +  1 ) ) ) ( S Tayl  ( ( S  D n F ) `  (
n  +  1 ) ) ) B )  <-> 
( CC  _D  (
( CC  D n
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  n ) )  =  ( CC 
_D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  D n F ) `
 n ) ) B ) ) ) )
14074, 139syl5ibr 213 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( CC  D n ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n )  =  ( ( N  +  ( M  -  n
) ) ( S Tayl  ( ( S  D n F ) `  n
) ) B )  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  D n F ) `  (
n  +  1 ) ) ) B ) ) )
141140expcom 425 . . . . 5  |-  ( n  e.  ( 0..^ M )  ->  ( ph  ->  ( ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B )  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  D n F ) `  (
n  +  1 ) ) ) B ) ) ) )
142141a2d 24 . . . 4  |-  ( n  e.  ( 0..^ M )  ->  ( ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  D n F ) `  n
) ) B ) )  ->  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  (
n  +  1 ) )  =  ( ( N  +  ( M  -  ( n  + 
1 ) ) ) ( S Tayl  ( ( S  D n F ) `  ( n  +  1 ) ) ) B ) ) ) )
14314, 23, 32, 41, 73, 142fzind2 11153 . . 3  |-  ( M  e.  ( 0 ... M )  ->  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  (
( S  D n F ) `  M
) ) B ) ) )
1445, 143mpcom 34 . 2  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  D n F ) `  M ) ) B ) )
14567subidd 9355 . . . . 5  |-  ( ph  ->  ( M  -  M
)  =  0 )
146145oveq2d 6056 . . . 4  |-  ( ph  ->  ( N  +  ( M  -  M ) )  =  ( N  +  0 ) )
147108addid1d 9222 . . . 4  |-  ( ph  ->  ( N  +  0 )  =  N )
148146, 147eqtrd 2436 . . 3  |-  ( ph  ->  ( N  +  ( M  -  M ) )  =  N )
149148oveq1d 6055 . 2  |-  ( ph  ->  ( ( N  +  ( M  -  M
) ) ( S Tayl  ( ( S  D n F ) `  M
) ) B )  =  ( N ( S Tayl  ( ( S  D n F ) `
 M ) ) B ) )
150144, 149eqtrd 2436 1  |-  ( ph  ->  ( ( CC  D n ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( N ( S Tayl  ( ( S  D n F ) `  M ) ) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    C_ wss 3280   {cpr 3775   dom cdm 4837   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977    ^pm cpm 6978   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    - cmin 9247   NN0cn0 10177   ZZ>=cuz 10444   ...cfz 10999  ..^cfzo 11090    _D cdv 19703    D ncdvn 19704   Tayl ctayl 20222
This theorem is referenced by:  dvntaylp0  20241  taylthlem1  20242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-fac 11522  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-tsms 18109  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-dvn 19708  df-tayl 20224
  Copyright terms: Public domain W3C validator