MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvntaylp Structured version   Unicode version

Theorem dvntaylp 21972
Description: The  M-th derivative of the Taylor polynomial is the Taylor polynomial of the  M-th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017.)
Hypotheses
Ref Expression
dvntaylp.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvntaylp.f  |-  ( ph  ->  F : A --> CC )
dvntaylp.a  |-  ( ph  ->  A  C_  S )
dvntaylp.m  |-  ( ph  ->  M  e.  NN0 )
dvntaylp.n  |-  ( ph  ->  N  e.  NN0 )
dvntaylp.b  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  ( N  +  M )
) )
Assertion
Ref Expression
dvntaylp  |-  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( N ( S Tayl  ( ( S  Dn F ) `  M ) ) B ) )

Proof of Theorem dvntaylp
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvntaylp.m . . . . 5  |-  ( ph  ->  M  e.  NN0 )
2 nn0uz 11009 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2552 . . . 4  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
4 eluzfz2b 11580 . . . 4  |-  ( M  e.  ( ZZ>= `  0
)  <->  M  e.  (
0 ... M ) )
53, 4sylib 196 . . 3  |-  ( ph  ->  M  e.  ( 0 ... M ) )
6 fveq2 5802 . . . . . 6  |-  ( m  =  0  ->  (
( CC  Dn
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) ` 
0 ) )
7 fveq2 5802 . . . . . . . 8  |-  ( m  =  0  ->  (
( S  Dn
F ) `  m
)  =  ( ( S  Dn F ) `  0 ) )
87oveq2d 6219 . . . . . . 7  |-  ( m  =  0  ->  ( S Tayl  ( ( S  Dn F ) `  m ) )  =  ( S Tayl  ( ( S  Dn F ) `  0 ) ) )
9 oveq2 6211 . . . . . . . 8  |-  ( m  =  0  ->  ( M  -  m )  =  ( M  - 
0 ) )
109oveq2d 6219 . . . . . . 7  |-  ( m  =  0  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  0 ) ) )
11 eqidd 2455 . . . . . . 7  |-  ( m  =  0  ->  B  =  B )
128, 10, 11oveq123d 6224 . . . . . 6  |-  ( m  =  0  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  Dn
F ) `  m
) ) B )  =  ( ( N  +  ( M  - 
0 ) ) ( S Tayl  ( ( S  Dn F ) `
 0 ) ) B ) )
136, 12eqeq12d 2476 . . . . 5  |-  ( m  =  0  ->  (
( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  Dn F ) `  m ) ) B )  <->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) ` 
0 )  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  (
( S  Dn
F ) `  0
) ) B ) ) )
1413imbi2d 316 . . . 4  |-  ( m  =  0  ->  (
( ph  ->  ( ( CC  Dn ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  Dn F ) `  m ) ) B ) )  <->  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  ( ( S  Dn F ) `  0 ) ) B ) ) ) )
15 fveq2 5802 . . . . . 6  |-  ( m  =  n  ->  (
( CC  Dn
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n ) )
16 fveq2 5802 . . . . . . . 8  |-  ( m  =  n  ->  (
( S  Dn
F ) `  m
)  =  ( ( S  Dn F ) `  n ) )
1716oveq2d 6219 . . . . . . 7  |-  ( m  =  n  ->  ( S Tayl  ( ( S  Dn F ) `  m ) )  =  ( S Tayl  ( ( S  Dn F ) `  n ) ) )
18 oveq2 6211 . . . . . . . 8  |-  ( m  =  n  ->  ( M  -  m )  =  ( M  -  n ) )
1918oveq2d 6219 . . . . . . 7  |-  ( m  =  n  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  n ) ) )
20 eqidd 2455 . . . . . . 7  |-  ( m  =  n  ->  B  =  B )
2117, 19, 20oveq123d 6224 . . . . . 6  |-  ( m  =  n  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  Dn
F ) `  m
) ) B )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  Dn F ) `
 n ) ) B ) )
2215, 21eqeq12d 2476 . . . . 5  |-  ( m  =  n  ->  (
( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  Dn F ) `  m ) ) B )  <->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  Dn
F ) `  n
) ) B ) ) )
2322imbi2d 316 . . . 4  |-  ( m  =  n  ->  (
( ph  ->  ( ( CC  Dn ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  Dn F ) `  m ) ) B ) )  <->  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n
)  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  Dn F ) `  n ) ) B ) ) ) )
24 fveq2 5802 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
( CC  Dn
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) ) )
25 fveq2 5802 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  (
( S  Dn
F ) `  m
)  =  ( ( S  Dn F ) `  ( n  +  1 ) ) )
2625oveq2d 6219 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  ( S Tayl  ( ( S  Dn F ) `  m ) )  =  ( S Tayl  ( ( S  Dn F ) `  ( n  +  1 ) ) ) )
27 oveq2 6211 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  ( M  -  m )  =  ( M  -  ( n  +  1
) ) )
2827oveq2d 6219 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  ( n  +  1 ) ) ) )
29 eqidd 2455 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  B  =  B )
3026, 28, 29oveq123d 6224 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  Dn
F ) `  m
) ) B )  =  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( ( S  Dn F ) `
 ( n  + 
1 ) ) ) B ) )
3124, 30eqeq12d 2476 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  Dn F ) `  m ) ) B )  <->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  Dn
F ) `  (
n  +  1 ) ) ) B ) ) )
3231imbi2d 316 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  ( ( CC  Dn ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  Dn F ) `  m ) ) B ) )  <->  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  (
n  +  1 ) )  =  ( ( N  +  ( M  -  ( n  + 
1 ) ) ) ( S Tayl  ( ( S  Dn F ) `  ( n  +  1 ) ) ) B ) ) ) )
33 fveq2 5802 . . . . . 6  |-  ( m  =  M  ->  (
( CC  Dn
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  m )  =  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M ) )
34 fveq2 5802 . . . . . . . 8  |-  ( m  =  M  ->  (
( S  Dn
F ) `  m
)  =  ( ( S  Dn F ) `  M ) )
3534oveq2d 6219 . . . . . . 7  |-  ( m  =  M  ->  ( S Tayl  ( ( S  Dn F ) `  m ) )  =  ( S Tayl  ( ( S  Dn F ) `  M ) ) )
36 oveq2 6211 . . . . . . . 8  |-  ( m  =  M  ->  ( M  -  m )  =  ( M  -  M ) )
3736oveq2d 6219 . . . . . . 7  |-  ( m  =  M  ->  ( N  +  ( M  -  m ) )  =  ( N  +  ( M  -  M ) ) )
38 eqidd 2455 . . . . . . 7  |-  ( m  =  M  ->  B  =  B )
3935, 37, 38oveq123d 6224 . . . . . 6  |-  ( m  =  M  ->  (
( N  +  ( M  -  m ) ) ( S Tayl  (
( S  Dn
F ) `  m
) ) B )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  Dn F ) `
 M ) ) B ) )
4033, 39eqeq12d 2476 . . . . 5  |-  ( m  =  M  ->  (
( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  m
)  =  ( ( N  +  ( M  -  m ) ) ( S Tayl  ( ( S  Dn F ) `  m ) ) B )  <->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  (
( S  Dn
F ) `  M
) ) B ) ) )
4140imbi2d 316 . . . 4  |-  ( m  =  M  ->  (
( ph  ->  ( ( CC  Dn ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 m )  =  ( ( N  +  ( M  -  m
) ) ( S Tayl  ( ( S  Dn F ) `  m ) ) B ) )  <->  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  Dn F ) `  M ) ) B ) ) ) )
42 ssid 3486 . . . . . . . 8  |-  CC  C_  CC
4342a1i 11 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
44 mapsspm 7359 . . . . . . . 8  |-  ( CC 
^m  CC )  C_  ( CC  ^pm  CC )
45 dvntaylp.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  { RR ,  CC } )
46 dvntaylp.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> CC )
47 dvntaylp.a . . . . . . . . . 10  |-  ( ph  ->  A  C_  S )
48 dvntaylp.n . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN0 )
4948, 1nn0addcld 10754 . . . . . . . . . 10  |-  ( ph  ->  ( N  +  M
)  e.  NN0 )
50 dvntaylp.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  ( N  +  M )
) )
51 eqid 2454 . . . . . . . . . 10  |-  ( ( N  +  M ) ( S Tayl  F ) B )  =  ( ( N  +  M
) ( S Tayl  F
) B )
5245, 46, 47, 49, 50, 51taylpf 21967 . . . . . . . . 9  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B ) : CC --> CC )
53 cnex 9477 . . . . . . . . . 10  |-  CC  e.  _V
5453, 53elmap 7354 . . . . . . . . 9  |-  ( ( ( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^m  CC ) 
<->  ( ( N  +  M ) ( S Tayl 
F ) B ) : CC --> CC )
5552, 54sylibr 212 . . . . . . . 8  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B )  e.  ( CC  ^m  CC ) )
5644, 55sseldi 3465 . . . . . . 7  |-  ( ph  ->  ( ( N  +  M ) ( S Tayl 
F ) B )  e.  ( CC  ^pm  CC ) )
57 dvn0 21534 . . . . . . 7  |-  ( ( CC  C_  CC  /\  (
( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^pm  CC ) )  ->  (
( CC  Dn
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  0 )  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
5843, 56, 57syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
59 recnprss 21515 . . . . . . . . . 10  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
6045, 59syl 16 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
6153a1i 11 . . . . . . . . . 10  |-  ( ph  ->  CC  e.  _V )
62 elpm2r 7343 . . . . . . . . . 10  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
6361, 45, 46, 47, 62syl22anc 1220 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
64 dvn0 21534 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( S  Dn
F ) `  0
)  =  F )
6560, 63, 64syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( S  Dn F ) ` 
0 )  =  F )
6665oveq2d 6219 . . . . . . 7  |-  ( ph  ->  ( S Tayl  ( ( S  Dn F ) `  0 ) )  =  ( S Tayl 
F ) )
671nn0cnd 10752 . . . . . . . . 9  |-  ( ph  ->  M  e.  CC )
6867subid1d 9822 . . . . . . . 8  |-  ( ph  ->  ( M  -  0 )  =  M )
6968oveq2d 6219 . . . . . . 7  |-  ( ph  ->  ( N  +  ( M  -  0 ) )  =  ( N  +  M ) )
70 eqidd 2455 . . . . . . 7  |-  ( ph  ->  B  =  B )
7166, 69, 70oveq123d 6224 . . . . . 6  |-  ( ph  ->  ( ( N  +  ( M  -  0
) ) ( S Tayl  ( ( S  Dn F ) ` 
0 ) ) B )  =  ( ( N  +  M ) ( S Tayl  F ) B ) )
7258, 71eqtr4d 2498 . . . . 5  |-  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  ( ( S  Dn F ) `  0 ) ) B ) )
7372a1i 11 . . . 4  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  0
)  =  ( ( N  +  ( M  -  0 ) ) ( S Tayl  ( ( S  Dn F ) `  0 ) ) B ) ) )
74 oveq2 6211 . . . . . . 7  |-  ( ( ( CC  Dn
( ( N  +  M ) ( S Tayl 
F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  Dn F ) `
 n ) ) B )  ->  ( CC  _D  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n ) )  =  ( CC  _D  (
( N  +  ( M  -  n ) ) ( S Tayl  (
( S  Dn
F ) `  n
) ) B ) ) )
7542a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  CC  C_  CC )
7656adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  M ) ( S Tayl  F ) B )  e.  ( CC 
^pm  CC ) )
77 elfzouz 11677 . . . . . . . . . . 11  |-  ( n  e.  ( 0..^ M )  ->  n  e.  ( ZZ>= `  0 )
)
7877adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  (
ZZ>= `  0 ) )
7978, 2syl6eleqr 2553 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  NN0 )
80 dvnp1 21535 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  (
( N  +  M
) ( S Tayl  F
) B )  e.  ( CC  ^pm  CC )  /\  n  e.  NN0 )  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( CC  _D  ( ( CC  Dn ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n ) ) )
8175, 76, 79, 80syl3anc 1219 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( CC  _D  ( ( CC  Dn ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n ) ) )
8245adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  S  e.  { RR ,  CC } )
8363adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  F  e.  ( CC  ^pm  S )
)
84 dvnf 21537 . . . . . . . . . . 11  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  ( ( S  Dn F ) `
 n ) : dom  ( ( S  Dn F ) `
 n ) --> CC )
8582, 83, 79, 84syl3anc 1219 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  Dn F ) `
 n ) : dom  ( ( S  Dn F ) `
 n ) --> CC )
86 dvnbss 21538 . . . . . . . . . . . . 13  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  dom  ( ( S  Dn F ) `  n ) 
C_  dom  F )
8782, 83, 79, 86syl3anc 1219 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  Dn F ) `
 n )  C_  dom  F )
88 fdm 5674 . . . . . . . . . . . . . 14  |-  ( F : A --> CC  ->  dom 
F  =  A )
8946, 88syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  F  =  A )
9089adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  F  =  A )
9187, 90sseqtrd 3503 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  Dn F ) `
 n )  C_  A )
9247adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  A  C_  S
)
9391, 92sstrd 3477 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  Dn F ) `
 n )  C_  S )
9448adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  N  e.  NN0 )
95 fzofzp1 11744 . . . . . . . . . . . . 13  |-  ( n  e.  ( 0..^ M )  ->  ( n  +  1 )  e.  ( 0 ... M
) )
9695adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( n  + 
1 )  e.  ( 0 ... M ) )
97 fznn0sub 11607 . . . . . . . . . . . 12  |-  ( ( n  +  1 )  e.  ( 0 ... M )  ->  ( M  -  ( n  +  1 ) )  e.  NN0 )
9896, 97syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  ( n  +  1
) )  e.  NN0 )
9994, 98nn0addcld 10754 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( M  -  (
n  +  1 ) ) )  e.  NN0 )
10050adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  B  e.  dom  ( ( S  Dn F ) `  ( N  +  M
) ) )
101 elfzofz 11687 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 0..^ M )  ->  n  e.  ( 0 ... M
) )
102101adantl 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  ( 0 ... M ) )
103 fznn0sub 11607 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 0 ... M )  ->  ( M  -  n )  e.  NN0 )
104102, 103syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  n )  e.  NN0 )
10594, 104nn0addcld 10754 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( M  -  n
) )  e.  NN0 )
106 dvnadd 21539 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( n  e.  NN0  /\  ( N  +  ( M  -  n ) )  e.  NN0 )
)  ->  ( ( S  Dn ( ( S  Dn F ) `  n ) ) `  ( N  +  ( M  -  n ) ) )  =  ( ( S  Dn F ) `
 ( n  +  ( N  +  ( M  -  n )
) ) ) )
10782, 83, 79, 105, 106syl22anc 1220 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  Dn ( ( S  Dn F ) `  n ) ) `  ( N  +  ( M  -  n ) ) )  =  ( ( S  Dn F ) `
 ( n  +  ( N  +  ( M  -  n )
) ) ) )
10848nn0cnd 10752 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  CC )
109108adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  N  e.  CC )
11098nn0cnd 10752 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  ( n  +  1
) )  e.  CC )
111 1cnd 9516 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  1  e.  CC )
112109, 110, 111addassd 9522 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 )  =  ( N  +  ( ( M  -  ( n  +  1 ) )  +  1 ) ) )
11367adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  M  e.  CC )
11479nn0cnd 10752 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  n  e.  CC )
115113, 114, 111nppcan2d 9859 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( M  -  ( n  + 
1 ) )  +  1 )  =  ( M  -  n ) )
116115oveq2d 6219 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( ( M  -  ( n  +  1
) )  +  1 ) )  =  ( N  +  ( M  -  n ) ) )
117112, 116eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 )  =  ( N  +  ( M  -  n ) ) )
118117fveq2d 5806 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  Dn ( ( S  Dn F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  ( ( S  Dn ( ( S  Dn F ) `  n ) ) `  ( N  +  ( M  -  n ) ) ) )
119114, 113pncan3d 9836 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( n  +  ( M  -  n
) )  =  M )
120119oveq2d 6219 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( n  +  ( M  -  n )
) )  =  ( N  +  M ) )
121113, 114subcld 9833 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( M  -  n )  e.  CC )
122109, 114, 121add12d 9705 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  ( n  +  ( M  -  n )
) )  =  ( n  +  ( N  +  ( M  -  n ) ) ) )
123120, 122eqtr3d 2497 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( N  +  M )  =  ( n  +  ( N  +  ( M  -  n ) ) ) )
124123fveq2d 5806 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  Dn F ) `
 ( N  +  M ) )  =  ( ( S  Dn F ) `  ( n  +  ( N  +  ( M  -  n ) ) ) ) )
125107, 118, 1243eqtr4d 2505 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  Dn ( ( S  Dn F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  ( ( S  Dn F ) `
 ( N  +  M ) ) )
126125dmeqd 5153 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  dom  ( ( S  Dn ( ( S  Dn F ) `  n ) ) `  ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) )  =  dom  ( ( S  Dn F ) `  ( N  +  M ) ) )
127100, 126eleqtrrd 2545 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  B  e.  dom  ( ( S  Dn ( ( S  Dn F ) `
 n ) ) `
 ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ) )
12882, 85, 93, 99, 127dvtaylp 21971 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( CC  _D  ( ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ( S Tayl  ( ( S  Dn F ) `  n ) ) B ) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  ( S  _D  ( ( S  Dn F ) `
 n ) ) ) B ) )
129117oveq1d 6218 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( N  +  ( M  -  ( n  + 
1 ) ) )  +  1 ) ( S Tayl  ( ( S  Dn F ) `
 n ) ) B )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  Dn
F ) `  n
) ) B ) )
130129oveq2d 6219 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( CC  _D  ( ( ( N  +  ( M  -  ( n  +  1
) ) )  +  1 ) ( S Tayl  ( ( S  Dn F ) `  n ) ) B ) )  =  ( CC  _D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  Dn F ) `  n ) ) B ) ) )
13160adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  S  C_  CC )
132 dvnp1 21535 . . . . . . . . . . . . 13  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
)  /\  n  e.  NN0 )  ->  ( ( S  Dn F ) `
 ( n  + 
1 ) )  =  ( S  _D  (
( S  Dn
F ) `  n
) ) )
133131, 83, 79, 132syl3anc 1219 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( S  Dn F ) `
 ( n  + 
1 ) )  =  ( S  _D  (
( S  Dn
F ) `  n
) ) )
134133oveq2d 6219 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( S Tayl  (
( S  Dn
F ) `  (
n  +  1 ) ) )  =  ( S Tayl  ( S  _D  ( ( S  Dn F ) `  n ) ) ) )
135134eqcomd 2462 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( S Tayl  ( S  _D  ( ( S  Dn F ) `
 n ) ) )  =  ( S Tayl  ( ( S  Dn F ) `  ( n  +  1
) ) ) )
136135oveqd 6220 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( S  _D  ( ( S  Dn F ) `  n ) ) ) B )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  Dn
F ) `  (
n  +  1 ) ) ) B ) )
137128, 130, 1363eqtr3rd 2504 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( N  +  ( M  -  ( n  +  1
) ) ) ( S Tayl  ( ( S  Dn F ) `
 ( n  + 
1 ) ) ) B )  =  ( CC  _D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  Dn F ) `  n ) ) B ) ) )
13881, 137eqeq12d 2476 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( CC  Dn ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 ( n  + 
1 ) )  =  ( ( N  +  ( M  -  (
n  +  1 ) ) ) ( S Tayl  ( ( S  Dn F ) `  ( n  +  1
) ) ) B )  <->  ( CC  _D  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n
) )  =  ( CC  _D  ( ( N  +  ( M  -  n ) ) ( S Tayl  ( ( S  Dn F ) `  n ) ) B ) ) ) )
13974, 138syl5ibr 221 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0..^ M ) )  ->  ( ( ( CC  Dn ( ( N  +  M
) ( S Tayl  F
) B ) ) `
 n )  =  ( ( N  +  ( M  -  n
) ) ( S Tayl  ( ( S  Dn F ) `  n ) ) B )  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  Dn
F ) `  (
n  +  1 ) ) ) B ) ) )
140139expcom 435 . . . . 5  |-  ( n  e.  ( 0..^ M )  ->  ( ph  ->  ( ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  Dn
F ) `  n
) ) B )  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  ( n  +  1
) )  =  ( ( N  +  ( M  -  ( n  +  1 ) ) ) ( S Tayl  (
( S  Dn
F ) `  (
n  +  1 ) ) ) B ) ) ) )
141140a2d 26 . . . 4  |-  ( n  e.  ( 0..^ M )  ->  ( ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  n )  =  ( ( N  +  ( M  -  n ) ) ( S Tayl  (
( S  Dn
F ) `  n
) ) B ) )  ->  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  (
n  +  1 ) )  =  ( ( N  +  ( M  -  ( n  + 
1 ) ) ) ( S Tayl  ( ( S  Dn F ) `  ( n  +  1 ) ) ) B ) ) ) )
14214, 23, 32, 41, 73, 141fzind2 11757 . . 3  |-  ( M  e.  ( 0 ... M )  ->  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M )  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  (
( S  Dn
F ) `  M
) ) B ) ) )
1435, 142mpcom 36 . 2  |-  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( ( N  +  ( M  -  M ) ) ( S Tayl  ( ( S  Dn F ) `  M ) ) B ) )
14467subidd 9821 . . . . 5  |-  ( ph  ->  ( M  -  M
)  =  0 )
145144oveq2d 6219 . . . 4  |-  ( ph  ->  ( N  +  ( M  -  M ) )  =  ( N  +  0 ) )
146108addid1d 9683 . . . 4  |-  ( ph  ->  ( N  +  0 )  =  N )
147145, 146eqtrd 2495 . . 3  |-  ( ph  ->  ( N  +  ( M  -  M ) )  =  N )
148147oveq1d 6218 . 2  |-  ( ph  ->  ( ( N  +  ( M  -  M
) ) ( S Tayl  ( ( S  Dn F ) `  M ) ) B )  =  ( N ( S Tayl  ( ( S  Dn F ) `  M ) ) B ) )
149143, 148eqtrd 2495 1  |-  ( ph  ->  ( ( CC  Dn ( ( N  +  M ) ( S Tayl  F ) B ) ) `  M
)  =  ( N ( S Tayl  ( ( S  Dn F ) `  M ) ) B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078    C_ wss 3439   {cpr 3990   dom cdm 4951   -->wf 5525   ` cfv 5529  (class class class)co 6203    ^m cmap 7327    ^pm cpm 7328   CCcc 9394   RRcr 9395   0cc0 9396   1c1 9397    + caddc 9399    - cmin 9709   NN0cn0 10693   ZZ>=cuz 10975   ...cfz 11557  ..^cfzo 11668    _D cdv 21474    Dncdvn 21475   Tayl ctayl 21954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475  ax-mulf 9476
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7775  df-sup 7805  df-oi 7838  df-card 8223  df-cda 8451  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-4 10496  df-5 10497  df-6 10498  df-7 10499  df-8 10500  df-9 10501  df-10 10502  df-n0 10694  df-z 10761  df-dec 10870  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-icc 11421  df-fz 11558  df-fzo 11669  df-seq 11927  df-exp 11986  df-fac 12172  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-clim 13087  df-sum 13285  df-struct 14297  df-ndx 14298  df-slot 14299  df-base 14300  df-sets 14301  df-ress 14302  df-plusg 14373  df-mulr 14374  df-starv 14375  df-sca 14376  df-vsca 14377  df-ip 14378  df-tset 14379  df-ple 14380  df-ds 14382  df-unif 14383  df-hom 14384  df-cco 14385  df-rest 14483  df-topn 14484  df-0g 14502  df-gsum 14503  df-topgen 14504  df-pt 14505  df-prds 14508  df-xrs 14562  df-qtop 14567  df-imas 14568  df-xps 14570  df-mre 14646  df-mrc 14647  df-acs 14649  df-mnd 15537  df-submnd 15587  df-grp 15667  df-minusg 15668  df-mulg 15670  df-cntz 15957  df-cmn 16403  df-abl 16404  df-mgp 16717  df-ur 16729  df-rng 16773  df-cring 16774  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-fbas 17942  df-fg 17943  df-cnfld 17947  df-top 18638  df-bases 18640  df-topon 18641  df-topsp 18642  df-cld 18758  df-ntr 18759  df-cls 18760  df-nei 18837  df-lp 18875  df-perf 18876  df-cn 18966  df-cnp 18967  df-haus 19054  df-tx 19270  df-hmeo 19463  df-fil 19554  df-fm 19646  df-flim 19647  df-flf 19648  df-tsms 19832  df-xms 20030  df-ms 20031  df-tms 20032  df-cncf 20589  df-limc 21477  df-dv 21478  df-dvn 21479  df-tayl 21956
This theorem is referenced by:  dvntaylp0  21973  taylthlem1  21974
  Copyright terms: Public domain W3C validator