MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem2 Structured version   Visualization version   GIF version

Theorem dquartlem2 24379
Description: Lemma for dquart 24380. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b (𝜑𝐵 ∈ ℂ)
dquart.c (𝜑𝐶 ∈ ℂ)
dquart.x (𝜑𝑋 ∈ ℂ)
dquart.s (𝜑𝑆 ∈ ℂ)
dquart.m (𝜑𝑀 = ((2 · 𝑆)↑2))
dquart.m0 (𝜑𝑀 ≠ 0)
dquart.i (𝜑𝐼 ∈ ℂ)
dquart.i2 (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆)))
dquart.d (𝜑𝐷 ∈ ℂ)
dquart.3 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0)
Assertion
Ref Expression
dquartlem2 (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷)

Proof of Theorem dquartlem2
StepHypRef Expression
1 dquart.m . . . . . . 7 (𝜑𝑀 = ((2 · 𝑆)↑2))
2 2cn 10968 . . . . . . . . 9 2 ∈ ℂ
3 dquart.s . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
4 mulcl 9899 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (2 · 𝑆) ∈ ℂ)
52, 3, 4sylancr 694 . . . . . . . 8 (𝜑 → (2 · 𝑆) ∈ ℂ)
65sqcld 12868 . . . . . . 7 (𝜑 → ((2 · 𝑆)↑2) ∈ ℂ)
71, 6eqeltrd 2688 . . . . . 6 (𝜑𝑀 ∈ ℂ)
8 dquart.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
97, 8addcld 9938 . . . . 5 (𝜑 → (𝑀 + 𝐵) ∈ ℂ)
102a1i 11 . . . . 5 (𝜑 → 2 ∈ ℂ)
11 2ne0 10990 . . . . . 6 2 ≠ 0
1211a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
139, 10, 12sqdivd 12883 . . . 4 (𝜑 → (((𝑀 + 𝐵) / 2)↑2) = (((𝑀 + 𝐵)↑2) / (2↑2)))
14 sq2 12822 . . . . 5 (2↑2) = 4
1514oveq2i 6560 . . . 4 (((𝑀 + 𝐵)↑2) / (2↑2)) = (((𝑀 + 𝐵)↑2) / 4)
1613, 15syl6eq 2660 . . 3 (𝜑 → (((𝑀 + 𝐵) / 2)↑2) = (((𝑀 + 𝐵)↑2) / 4))
1716oveq1d 6564 . 2 (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = ((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)))
189sqcld 12868 . . . . 5 (𝜑 → ((𝑀 + 𝐵)↑2) ∈ ℂ)
19 4cn 10975 . . . . . 6 4 ∈ ℂ
2019a1i 11 . . . . 5 (𝜑 → 4 ∈ ℂ)
21 4ne0 10994 . . . . . 6 4 ≠ 0
2221a1i 11 . . . . 5 (𝜑 → 4 ≠ 0)
2318, 20, 22divcld 10680 . . . 4 (𝜑 → (((𝑀 + 𝐵)↑2) / 4) ∈ ℂ)
24 dquart.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
2524sqcld 12868 . . . . . 6 (𝜑 → (𝐶↑2) ∈ ℂ)
2625, 20, 22divcld 10680 . . . . 5 (𝜑 → ((𝐶↑2) / 4) ∈ ℂ)
27 dquart.m0 . . . . 5 (𝜑𝑀 ≠ 0)
2826, 7, 27divcld 10680 . . . 4 (𝜑 → (((𝐶↑2) / 4) / 𝑀) ∈ ℂ)
2923, 28subcld 10271 . . 3 (𝜑 → ((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)) ∈ ℂ)
30 dquart.d . . 3 (𝜑𝐷 ∈ ℂ)
3123, 28, 7subdird 10366 . . . 4 (𝜑 → (((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)) · 𝑀) = (((((𝑀 + 𝐵)↑2) / 4) · 𝑀) − ((((𝐶↑2) / 4) / 𝑀) · 𝑀)))
3218, 7, 20, 22div23d 10717 . . . . . 6 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) / 4) = ((((𝑀 + 𝐵)↑2) / 4) · 𝑀))
3332eqcomd 2616 . . . . 5 (𝜑 → ((((𝑀 + 𝐵)↑2) / 4) · 𝑀) = ((((𝑀 + 𝐵)↑2) · 𝑀) / 4))
3426, 7, 27divcan1d 10681 . . . . 5 (𝜑 → ((((𝐶↑2) / 4) / 𝑀) · 𝑀) = ((𝐶↑2) / 4))
3533, 34oveq12d 6567 . . . 4 (𝜑 → (((((𝑀 + 𝐵)↑2) / 4) · 𝑀) − ((((𝐶↑2) / 4) / 𝑀) · 𝑀)) = (((((𝑀 + 𝐵)↑2) · 𝑀) / 4) − ((𝐶↑2) / 4)))
36 binom2 12841 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑀 + 𝐵)↑2) = (((𝑀↑2) + (2 · (𝑀 · 𝐵))) + (𝐵↑2)))
377, 8, 36syl2anc 691 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 𝐵)↑2) = (((𝑀↑2) + (2 · (𝑀 · 𝐵))) + (𝐵↑2)))
3837oveq1d 6564 . . . . . . . . . . 11 (𝜑 → (((𝑀 + 𝐵)↑2) · 𝑀) = ((((𝑀↑2) + (2 · (𝑀 · 𝐵))) + (𝐵↑2)) · 𝑀))
397sqcld 12868 . . . . . . . . . . . . 13 (𝜑 → (𝑀↑2) ∈ ℂ)
407, 8mulcld 9939 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · 𝐵) ∈ ℂ)
41 mulcl 9899 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (𝑀 · 𝐵) ∈ ℂ) → (2 · (𝑀 · 𝐵)) ∈ ℂ)
422, 40, 41sylancr 694 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝑀 · 𝐵)) ∈ ℂ)
4339, 42addcld 9938 . . . . . . . . . . . 12 (𝜑 → ((𝑀↑2) + (2 · (𝑀 · 𝐵))) ∈ ℂ)
448sqcld 12868 . . . . . . . . . . . 12 (𝜑 → (𝐵↑2) ∈ ℂ)
4543, 44, 7adddird 9944 . . . . . . . . . . 11 (𝜑 → ((((𝑀↑2) + (2 · (𝑀 · 𝐵))) + (𝐵↑2)) · 𝑀) = ((((𝑀↑2) + (2 · (𝑀 · 𝐵))) · 𝑀) + ((𝐵↑2) · 𝑀)))
4639, 42, 7adddird 9944 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑2) + (2 · (𝑀 · 𝐵))) · 𝑀) = (((𝑀↑2) · 𝑀) + ((2 · (𝑀 · 𝐵)) · 𝑀)))
47 df-3 10957 . . . . . . . . . . . . . . . 16 3 = (2 + 1)
4847oveq2i 6560 . . . . . . . . . . . . . . 15 (𝑀↑3) = (𝑀↑(2 + 1))
49 2nn0 11186 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
50 expp1 12729 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝑀↑(2 + 1)) = ((𝑀↑2) · 𝑀))
517, 49, 50sylancl 693 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(2 + 1)) = ((𝑀↑2) · 𝑀))
5248, 51syl5req 2657 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑2) · 𝑀) = (𝑀↑3))
53 mulcl 9899 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) ∈ ℂ)
542, 8, 53sylancr 694 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · 𝐵) ∈ ℂ)
5554, 7, 7mulassd 9942 . . . . . . . . . . . . . . 15 (𝜑 → (((2 · 𝐵) · 𝑀) · 𝑀) = ((2 · 𝐵) · (𝑀 · 𝑀)))
5610, 7, 8mulassd 9942 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑀) · 𝐵) = (2 · (𝑀 · 𝐵)))
5710, 7, 8mul32d 10125 . . . . . . . . . . . . . . . . 17 (𝜑 → ((2 · 𝑀) · 𝐵) = ((2 · 𝐵) · 𝑀))
5856, 57eqtr3d 2646 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝑀 · 𝐵)) = ((2 · 𝐵) · 𝑀))
5958oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · (𝑀 · 𝐵)) · 𝑀) = (((2 · 𝐵) · 𝑀) · 𝑀))
607sqvald 12867 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
6160oveq2d 6565 . . . . . . . . . . . . . . 15 (𝜑 → ((2 · 𝐵) · (𝑀↑2)) = ((2 · 𝐵) · (𝑀 · 𝑀)))
6255, 59, 613eqtr4d 2654 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (𝑀 · 𝐵)) · 𝑀) = ((2 · 𝐵) · (𝑀↑2)))
6352, 62oveq12d 6567 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑2) · 𝑀) + ((2 · (𝑀 · 𝐵)) · 𝑀)) = ((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))))
6446, 63eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → (((𝑀↑2) + (2 · (𝑀 · 𝐵))) · 𝑀) = ((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))))
6564oveq1d 6564 . . . . . . . . . . 11 (𝜑 → ((((𝑀↑2) + (2 · (𝑀 · 𝐵))) · 𝑀) + ((𝐵↑2) · 𝑀)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)))
6638, 45, 653eqtrd 2648 . . . . . . . . . 10 (𝜑 → (((𝑀 + 𝐵)↑2) · 𝑀) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)))
6766oveq1d 6564 . . . . . . . . 9 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)) = ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)) − ((4 · 𝐷) · 𝑀)))
68 3nn0 11187 . . . . . . . . . . . . 13 3 ∈ ℕ0
69 expcl 12740 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
707, 68, 69sylancl 693 . . . . . . . . . . . 12 (𝜑 → (𝑀↑3) ∈ ℂ)
7154, 39mulcld 9939 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝐵) · (𝑀↑2)) ∈ ℂ)
7270, 71addcld 9938 . . . . . . . . . . 11 (𝜑 → ((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) ∈ ℂ)
7344, 7mulcld 9939 . . . . . . . . . . 11 (𝜑 → ((𝐵↑2) · 𝑀) ∈ ℂ)
74 mulcl 9899 . . . . . . . . . . . . 13 ((4 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (4 · 𝐷) ∈ ℂ)
7519, 30, 74sylancr 694 . . . . . . . . . . . 12 (𝜑 → (4 · 𝐷) ∈ ℂ)
7675, 7mulcld 9939 . . . . . . . . . . 11 (𝜑 → ((4 · 𝐷) · 𝑀) ∈ ℂ)
7772, 73, 76addsubassd 10291 . . . . . . . . . 10 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)) − ((4 · 𝐷) · 𝑀)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) · 𝑀) − ((4 · 𝐷) · 𝑀))))
7844, 75, 7subdird 10366 . . . . . . . . . . 11 (𝜑 → (((𝐵↑2) − (4 · 𝐷)) · 𝑀) = (((𝐵↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)))
7978oveq2d 6565 . . . . . . . . . 10 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) · 𝑀) − ((4 · 𝐷) · 𝑀))))
8077, 79eqtr4d 2647 . . . . . . . . 9 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((𝐵↑2) · 𝑀)) − ((4 · 𝐷) · 𝑀)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)))
8144, 75subcld 10271 . . . . . . . . . . . 12 (𝜑 → ((𝐵↑2) − (4 · 𝐷)) ∈ ℂ)
8281, 7mulcld 9939 . . . . . . . . . . 11 (𝜑 → (((𝐵↑2) − (4 · 𝐷)) · 𝑀) ∈ ℂ)
8372, 82addcld 9938 . . . . . . . . . 10 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) ∈ ℂ)
8425negcld 10258 . . . . . . . . . . . 12 (𝜑 → -(𝐶↑2) ∈ ℂ)
8572, 82, 84addassd 9941 . . . . . . . . . . 11 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) + -(𝐶↑2)) = (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))))
8683, 25negsubd 10277 . . . . . . . . . . 11 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) + -(𝐶↑2)) = ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) − (𝐶↑2)))
87 dquart.3 . . . . . . . . . . 11 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0)
8885, 86, 873eqtr3d 2652 . . . . . . . . . 10 (𝜑 → ((((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) − (𝐶↑2)) = 0)
8983, 25, 88subeq0d 10279 . . . . . . . . 9 (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + (((𝐵↑2) − (4 · 𝐷)) · 𝑀)) = (𝐶↑2))
9067, 80, 893eqtrd 2648 . . . . . . . 8 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)) = (𝐶↑2))
9118, 7mulcld 9939 . . . . . . . . 9 (𝜑 → (((𝑀 + 𝐵)↑2) · 𝑀) ∈ ℂ)
92 subsub23 10165 . . . . . . . . 9 (((((𝑀 + 𝐵)↑2) · 𝑀) ∈ ℂ ∧ ((4 · 𝐷) · 𝑀) ∈ ℂ ∧ (𝐶↑2) ∈ ℂ) → (((((𝑀 + 𝐵)↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)) = (𝐶↑2) ↔ ((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) = ((4 · 𝐷) · 𝑀)))
9391, 76, 25, 92syl3anc 1318 . . . . . . . 8 (𝜑 → (((((𝑀 + 𝐵)↑2) · 𝑀) − ((4 · 𝐷) · 𝑀)) = (𝐶↑2) ↔ ((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) = ((4 · 𝐷) · 𝑀)))
9490, 93mpbid 221 . . . . . . 7 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) = ((4 · 𝐷) · 𝑀))
9520, 30, 7mulassd 9942 . . . . . . 7 (𝜑 → ((4 · 𝐷) · 𝑀) = (4 · (𝐷 · 𝑀)))
9694, 95eqtrd 2644 . . . . . 6 (𝜑 → ((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) = (4 · (𝐷 · 𝑀)))
9796oveq1d 6564 . . . . 5 (𝜑 → (((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) / 4) = ((4 · (𝐷 · 𝑀)) / 4))
9891, 25, 20, 22divsubdird 10719 . . . . 5 (𝜑 → (((((𝑀 + 𝐵)↑2) · 𝑀) − (𝐶↑2)) / 4) = (((((𝑀 + 𝐵)↑2) · 𝑀) / 4) − ((𝐶↑2) / 4)))
9930, 7mulcld 9939 . . . . . 6 (𝜑 → (𝐷 · 𝑀) ∈ ℂ)
10099, 20, 22divcan3d 10685 . . . . 5 (𝜑 → ((4 · (𝐷 · 𝑀)) / 4) = (𝐷 · 𝑀))
10197, 98, 1003eqtr3d 2652 . . . 4 (𝜑 → (((((𝑀 + 𝐵)↑2) · 𝑀) / 4) − ((𝐶↑2) / 4)) = (𝐷 · 𝑀))
10231, 35, 1013eqtrd 2648 . . 3 (𝜑 → (((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)) · 𝑀) = (𝐷 · 𝑀))
10329, 30, 7, 27, 102mulcan2ad 10542 . 2 (𝜑 → ((((𝑀 + 𝐵)↑2) / 4) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷)
10417, 103eqtrd 2644 1 (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  3c3 10948  4c4 10949  0cn0 11169  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723
This theorem is referenced by:  dquart  24380
  Copyright terms: Public domain W3C validator