MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem2 Structured version   Visualization version   Unicode version

Theorem dquartlem2 23857
Description: Lemma for dquart 23858. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b  |-  ( ph  ->  B  e.  CC )
dquart.c  |-  ( ph  ->  C  e.  CC )
dquart.x  |-  ( ph  ->  X  e.  CC )
dquart.s  |-  ( ph  ->  S  e.  CC )
dquart.m  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
dquart.m0  |-  ( ph  ->  M  =/=  0 )
dquart.i  |-  ( ph  ->  I  e.  CC )
dquart.i2  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
dquart.d  |-  ( ph  ->  D  e.  CC )
dquart.3  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( ( B ^
2 )  -  (
4  x.  D ) )  x.  M )  +  -u ( C ^
2 ) ) )  =  0 )
Assertion
Ref Expression
dquartlem2  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )

Proof of Theorem dquartlem2
StepHypRef Expression
1 dquart.m . . . . . . 7  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
2 2cn 10702 . . . . . . . . 9  |-  2  e.  CC
3 dquart.s . . . . . . . . 9  |-  ( ph  ->  S  e.  CC )
4 mulcl 9641 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( 2  x.  S
)  e.  CC )
52, 3, 4sylancr 676 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
65sqcld 12452 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  e.  CC )
71, 6eqeltrd 2549 . . . . . 6  |-  ( ph  ->  M  e.  CC )
8 dquart.b . . . . . 6  |-  ( ph  ->  B  e.  CC )
97, 8addcld 9680 . . . . 5  |-  ( ph  ->  ( M  +  B
)  e.  CC )
102a1i 11 . . . . 5  |-  ( ph  ->  2  e.  CC )
11 2ne0 10724 . . . . . 6  |-  2  =/=  0
1211a1i 11 . . . . 5  |-  ( ph  ->  2  =/=  0 )
139, 10, 12sqdivd 12467 . . . 4  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 ) ^ 2 )  =  ( ( ( M  +  B
) ^ 2 )  /  ( 2 ^ 2 ) ) )
14 sq2 12409 . . . . 5  |-  ( 2 ^ 2 )  =  4
1514oveq2i 6319 . . . 4  |-  ( ( ( M  +  B
) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( ( M  +  B ) ^
2 )  /  4
)
1613, 15syl6eq 2521 . . 3  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 ) ^ 2 )  =  ( ( ( M  +  B
) ^ 2 )  /  4 ) )
1716oveq1d 6323 . 2  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  ( ( ( ( M  +  B ) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  /  4 )  /  M ) ) )
189sqcld 12452 . . . . 5  |-  ( ph  ->  ( ( M  +  B ) ^ 2 )  e.  CC )
19 4cn 10709 . . . . . 6  |-  4  e.  CC
2019a1i 11 . . . . 5  |-  ( ph  ->  4  e.  CC )
21 4ne0 10728 . . . . . 6  |-  4  =/=  0
2221a1i 11 . . . . 5  |-  ( ph  ->  4  =/=  0 )
2318, 20, 22divcld 10405 . . . 4  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  /  4
)  e.  CC )
24 dquart.c . . . . . . 7  |-  ( ph  ->  C  e.  CC )
2524sqcld 12452 . . . . . 6  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
2625, 20, 22divcld 10405 . . . . 5  |-  ( ph  ->  ( ( C ^
2 )  /  4
)  e.  CC )
27 dquart.m0 . . . . 5  |-  ( ph  ->  M  =/=  0 )
2826, 7, 27divcld 10405 . . . 4  |-  ( ph  ->  ( ( ( C ^ 2 )  / 
4 )  /  M
)  e.  CC )
2923, 28subcld 10005 . . 3  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  e.  CC )
30 dquart.d . . 3  |-  ( ph  ->  D  e.  CC )
3123, 28, 7subdird 10096 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  / 
4 )  /  M
) )  x.  M
)  =  ( ( ( ( ( M  +  B ) ^
2 )  /  4
)  x.  M )  -  ( ( ( ( C ^ 2 )  /  4 )  /  M )  x.  M ) ) )
3218, 7, 20, 22div23d 10442 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4
)  =  ( ( ( ( M  +  B ) ^ 2 )  /  4 )  x.  M ) )
3332eqcomd 2477 . . . . 5  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  x.  M
)  =  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4 ) )
3426, 7, 27divcan1d 10406 . . . . 5  |-  ( ph  ->  ( ( ( ( C ^ 2 )  /  4 )  /  M )  x.  M
)  =  ( ( C ^ 2 )  /  4 ) )
3533, 34oveq12d 6326 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  x.  M )  -  (
( ( ( C ^ 2 )  / 
4 )  /  M
)  x.  M ) )  =  ( ( ( ( ( M  +  B ) ^
2 )  x.  M
)  /  4 )  -  ( ( C ^ 2 )  / 
4 ) ) )
36 binom2 12427 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  B  e.  CC )  ->  ( ( M  +  B ) ^ 2 )  =  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^
2 ) ) )
377, 8, 36syl2anc 673 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  +  B ) ^ 2 )  =  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^
2 ) ) )
3837oveq1d 6323 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  =  ( ( ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^ 2 ) )  x.  M ) )
397sqcld 12452 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
407, 8mulcld 9681 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  x.  B
)  e.  CC )
41 mulcl 9641 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( M  x.  B
)  e.  CC )  ->  ( 2  x.  ( M  x.  B
) )  e.  CC )
422, 40, 41sylancr 676 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( M  x.  B )
)  e.  CC )
4339, 42addcld 9680 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  e.  CC )
448sqcld 12452 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
4543, 44, 7adddird 9686 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B
) ) )  +  ( B ^ 2 ) )  x.  M
)  =  ( ( ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  x.  M )  +  ( ( B ^ 2 )  x.  M ) ) )
4639, 42, 7adddird 9686 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B )
) )  x.  M
)  =  ( ( ( M ^ 2 )  x.  M )  +  ( ( 2  x.  ( M  x.  B ) )  x.  M ) ) )
47 df-3 10691 . . . . . . . . . . . . . . . 16  |-  3  =  ( 2  +  1 )
4847oveq2i 6319 . . . . . . . . . . . . . . 15  |-  ( M ^ 3 )  =  ( M ^ (
2  +  1 ) )
49 2nn0 10910 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
50 expp1 12317 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  CC  /\  2  e.  NN0 )  -> 
( M ^ (
2  +  1 ) )  =  ( ( M ^ 2 )  x.  M ) )
517, 49, 50sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ (
2  +  1 ) )  =  ( ( M ^ 2 )  x.  M ) )
5248, 51syl5req 2518 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M ^
2 )  x.  M
)  =  ( M ^ 3 ) )
53 mulcl 9641 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
542, 8, 53sylancr 676 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  B
)  e.  CC )
5554, 7, 7mulassd 9684 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2  x.  B )  x.  M )  x.  M
)  =  ( ( 2  x.  B )  x.  ( M  x.  M ) ) )
5610, 7, 8mulassd 9684 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  M )  x.  B
)  =  ( 2  x.  ( M  x.  B ) ) )
5710, 7, 8mul32d 9861 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  M )  x.  B
)  =  ( ( 2  x.  B )  x.  M ) )
5856, 57eqtr3d 2507 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  ( M  x.  B )
)  =  ( ( 2  x.  B )  x.  M ) )
5958oveq1d 6323 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  x.  ( M  x.  B
) )  x.  M
)  =  ( ( ( 2  x.  B
)  x.  M )  x.  M ) )
607sqvald 12451 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
6160oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  x.  B )  x.  ( M ^ 2 ) )  =  ( ( 2  x.  B )  x.  ( M  x.  M
) ) )
6255, 59, 613eqtr4d 2515 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( M  x.  B
) )  x.  M
)  =  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )
6352, 62oveq12d 6326 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M ^ 2 )  x.  M )  +  ( ( 2  x.  ( M  x.  B )
)  x.  M ) )  =  ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) ) )
6446, 63eqtrd 2505 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B )
) )  x.  M
)  =  ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) ) )
6564oveq1d 6323 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B
) ) )  x.  M )  +  ( ( B ^ 2 )  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( B ^ 2 )  x.  M ) ) )
6638, 45, 653eqtrd 2509 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( B ^ 2 )  x.  M ) ) )
6766oveq1d 6323 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  +  ( ( B ^ 2 )  x.  M ) )  -  ( ( 4  x.  D )  x.  M ) ) )
68 3nn0 10911 . . . . . . . . . . . . 13  |-  3  e.  NN0
69 expcl 12328 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
707, 68, 69sylancl 675 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
7154, 39mulcld 9681 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  B )  x.  ( M ^ 2 ) )  e.  CC )
7270, 71addcld 9680 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  e.  CC )
7344, 7mulcld 9681 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B ^
2 )  x.  M
)  e.  CC )
74 mulcl 9641 . . . . . . . . . . . . 13  |-  ( ( 4  e.  CC  /\  D  e.  CC )  ->  ( 4  x.  D
)  e.  CC )
7519, 30, 74sylancr 676 . . . . . . . . . . . 12  |-  ( ph  ->  ( 4  x.  D
)  e.  CC )
7675, 7mulcld 9681 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 4  x.  D )  x.  M
)  e.  CC )
7772, 73, 76addsubassd 10025 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( B ^
2 )  x.  M
) )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( B ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) ) ) )
7844, 75, 7subdird 10096 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
)  =  ( ( ( B ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M ) ) )
7978oveq2d 6324 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) ) ) )
8077, 79eqtr4d 2508 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( B ^
2 )  x.  M
) )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) ) )
8144, 75subcld 10005 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B ^
2 )  -  (
4  x.  D ) )  e.  CC )
8281, 7mulcld 9681 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
)  e.  CC )
8372, 82addcld 9680 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  e.  CC )
8425negcld 9992 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( C ^
2 )  e.  CC )
8572, 82, 84addassd 9683 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  +  -u ( C ^ 2 ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M )  + 
-u ( C ^
2 ) ) ) )
8683, 25negsubd 10011 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  +  -u ( C ^ 2 ) )  =  ( ( ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  -  ( C ^
2 ) ) )
87 dquart.3 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( ( B ^
2 )  -  (
4  x.  D ) )  x.  M )  +  -u ( C ^
2 ) ) )  =  0 )
8885, 86, 873eqtr3d 2513 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  -  ( C ^ 2 ) )  =  0 )
8983, 25, 88subeq0d 10013 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  =  ( C ^
2 ) )
9067, 80, 893eqtrd 2509 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) )  =  ( C ^ 2 ) )
9118, 7mulcld 9681 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  e.  CC )
92 subsub23 9900 . . . . . . . . 9  |-  ( ( ( ( ( M  +  B ) ^
2 )  x.  M
)  e.  CC  /\  ( ( 4  x.  D )  x.  M
)  e.  CC  /\  ( C ^ 2 )  e.  CC )  -> 
( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) )  =  ( C ^ 2 )  <-> 
( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) ) )
9391, 76, 25, 92syl3anc 1292 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) )  =  ( C ^ 2 )  <-> 
( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) ) )
9490, 93mpbid 215 . . . . . . 7  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) )
9520, 30, 7mulassd 9684 . . . . . . 7  |-  ( ph  ->  ( ( 4  x.  D )  x.  M
)  =  ( 4  x.  ( D  x.  M ) ) )
9694, 95eqtrd 2505 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( 4  x.  ( D  x.  M
) ) )
9796oveq1d 6323 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  /  4 )  =  ( ( 4  x.  ( D  x.  M ) )  / 
4 ) )
9891, 25, 20, 22divsubdird 10444 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  /  4 )  =  ( ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4 )  -  ( ( C ^
2 )  /  4
) ) )
9930, 7mulcld 9681 . . . . . 6  |-  ( ph  ->  ( D  x.  M
)  e.  CC )
10099, 20, 22divcan3d 10410 . . . . 5  |-  ( ph  ->  ( ( 4  x.  ( D  x.  M
) )  /  4
)  =  ( D  x.  M ) )
10197, 98, 1003eqtr3d 2513 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  / 
4 )  -  (
( C ^ 2 )  /  4 ) )  =  ( D  x.  M ) )
10231, 35, 1013eqtrd 2509 . . 3  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  / 
4 )  /  M
) )  x.  M
)  =  ( D  x.  M ) )
10329, 30, 7, 27, 102mulcan2ad 10270 . 2  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )
10417, 103eqtrd 2505 1  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    = wceq 1452    e. wcel 1904    =/= wne 2641  (class class class)co 6308   CCcc 9555   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    - cmin 9880   -ucneg 9881    / cdiv 10291   2c2 10681   3c3 10682   4c4 10683   NN0cn0 10893   ^cexp 12310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-n0 10894  df-z 10962  df-uz 11183  df-seq 12252  df-exp 12311
This theorem is referenced by:  dquart  23858
  Copyright terms: Public domain W3C validator