MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem2 Unicode version

Theorem dquartlem2 20645
Description: Lemma for dquart 20646. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b  |-  ( ph  ->  B  e.  CC )
dquart.c  |-  ( ph  ->  C  e.  CC )
dquart.x  |-  ( ph  ->  X  e.  CC )
dquart.s  |-  ( ph  ->  S  e.  CC )
dquart.m  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
dquart.m0  |-  ( ph  ->  M  =/=  0 )
dquart.i  |-  ( ph  ->  I  e.  CC )
dquart.i2  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
dquart.d  |-  ( ph  ->  D  e.  CC )
dquart.3  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( ( B ^
2 )  -  (
4  x.  D ) )  x.  M )  +  -u ( C ^
2 ) ) )  =  0 )
Assertion
Ref Expression
dquartlem2  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )

Proof of Theorem dquartlem2
StepHypRef Expression
1 dquart.m . . . . . . 7  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
2 2cn 10026 . . . . . . . . 9  |-  2  e.  CC
3 dquart.s . . . . . . . . 9  |-  ( ph  ->  S  e.  CC )
4 mulcl 9030 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( 2  x.  S
)  e.  CC )
52, 3, 4sylancr 645 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
65sqcld 11476 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  e.  CC )
71, 6eqeltrd 2478 . . . . . 6  |-  ( ph  ->  M  e.  CC )
8 dquart.b . . . . . 6  |-  ( ph  ->  B  e.  CC )
97, 8addcld 9063 . . . . 5  |-  ( ph  ->  ( M  +  B
)  e.  CC )
102a1i 11 . . . . 5  |-  ( ph  ->  2  e.  CC )
11 2ne0 10039 . . . . . 6  |-  2  =/=  0
1211a1i 11 . . . . 5  |-  ( ph  ->  2  =/=  0 )
139, 10, 12sqdivd 11491 . . . 4  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 ) ^ 2 )  =  ( ( ( M  +  B
) ^ 2 )  /  ( 2 ^ 2 ) ) )
14 sq2 11432 . . . . 5  |-  ( 2 ^ 2 )  =  4
1514oveq2i 6051 . . . 4  |-  ( ( ( M  +  B
) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( ( M  +  B ) ^
2 )  /  4
)
1613, 15syl6eq 2452 . . 3  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 ) ^ 2 )  =  ( ( ( M  +  B
) ^ 2 )  /  4 ) )
1716oveq1d 6055 . 2  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  ( ( ( ( M  +  B ) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  /  4 )  /  M ) ) )
189sqcld 11476 . . . . 5  |-  ( ph  ->  ( ( M  +  B ) ^ 2 )  e.  CC )
19 4cn 10030 . . . . . 6  |-  4  e.  CC
2019a1i 11 . . . . 5  |-  ( ph  ->  4  e.  CC )
21 4nn 10091 . . . . . . 7  |-  4  e.  NN
2221nnne0i 9990 . . . . . 6  |-  4  =/=  0
2322a1i 11 . . . . 5  |-  ( ph  ->  4  =/=  0 )
2418, 20, 23divcld 9746 . . . 4  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  /  4
)  e.  CC )
25 dquart.c . . . . . . 7  |-  ( ph  ->  C  e.  CC )
2625sqcld 11476 . . . . . 6  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
2726, 20, 23divcld 9746 . . . . 5  |-  ( ph  ->  ( ( C ^
2 )  /  4
)  e.  CC )
28 dquart.m0 . . . . 5  |-  ( ph  ->  M  =/=  0 )
2927, 7, 28divcld 9746 . . . 4  |-  ( ph  ->  ( ( ( C ^ 2 )  / 
4 )  /  M
)  e.  CC )
3024, 29subcld 9367 . . 3  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  e.  CC )
31 dquart.d . . 3  |-  ( ph  ->  D  e.  CC )
3224, 29, 7subdird 9446 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  / 
4 )  /  M
) )  x.  M
)  =  ( ( ( ( ( M  +  B ) ^
2 )  /  4
)  x.  M )  -  ( ( ( ( C ^ 2 )  /  4 )  /  M )  x.  M ) ) )
3318, 7, 20, 23div23d 9783 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4
)  =  ( ( ( ( M  +  B ) ^ 2 )  /  4 )  x.  M ) )
3433eqcomd 2409 . . . . 5  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  x.  M
)  =  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4 ) )
3527, 7, 28divcan1d 9747 . . . . 5  |-  ( ph  ->  ( ( ( ( C ^ 2 )  /  4 )  /  M )  x.  M
)  =  ( ( C ^ 2 )  /  4 ) )
3634, 35oveq12d 6058 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  x.  M )  -  (
( ( ( C ^ 2 )  / 
4 )  /  M
)  x.  M ) )  =  ( ( ( ( ( M  +  B ) ^
2 )  x.  M
)  /  4 )  -  ( ( C ^ 2 )  / 
4 ) ) )
37 binom2 11451 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  B  e.  CC )  ->  ( ( M  +  B ) ^ 2 )  =  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^
2 ) ) )
387, 8, 37syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  +  B ) ^ 2 )  =  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^
2 ) ) )
3938oveq1d 6055 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  =  ( ( ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^ 2 ) )  x.  M ) )
407sqcld 11476 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
417, 8mulcld 9064 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  x.  B
)  e.  CC )
42 mulcl 9030 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( M  x.  B
)  e.  CC )  ->  ( 2  x.  ( M  x.  B
) )  e.  CC )
432, 41, 42sylancr 645 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( M  x.  B )
)  e.  CC )
4440, 43addcld 9063 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  e.  CC )
458sqcld 11476 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
4644, 45, 7adddird 9069 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B
) ) )  +  ( B ^ 2 ) )  x.  M
)  =  ( ( ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  x.  M )  +  ( ( B ^ 2 )  x.  M ) ) )
4740, 43, 7adddird 9069 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B )
) )  x.  M
)  =  ( ( ( M ^ 2 )  x.  M )  +  ( ( 2  x.  ( M  x.  B ) )  x.  M ) ) )
48 df-3 10015 . . . . . . . . . . . . . . . 16  |-  3  =  ( 2  +  1 )
4948oveq2i 6051 . . . . . . . . . . . . . . 15  |-  ( M ^ 3 )  =  ( M ^ (
2  +  1 ) )
50 2nn0 10194 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
51 expp1 11343 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  CC  /\  2  e.  NN0 )  -> 
( M ^ (
2  +  1 ) )  =  ( ( M ^ 2 )  x.  M ) )
527, 50, 51sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ (
2  +  1 ) )  =  ( ( M ^ 2 )  x.  M ) )
5349, 52syl5req 2449 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M ^
2 )  x.  M
)  =  ( M ^ 3 ) )
54 mulcl 9030 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
552, 8, 54sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  B
)  e.  CC )
5655, 7, 7mulassd 9067 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2  x.  B )  x.  M )  x.  M
)  =  ( ( 2  x.  B )  x.  ( M  x.  M ) ) )
5710, 7, 8mulassd 9067 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  M )  x.  B
)  =  ( 2  x.  ( M  x.  B ) ) )
5810, 7, 8mul32d 9232 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  M )  x.  B
)  =  ( ( 2  x.  B )  x.  M ) )
5957, 58eqtr3d 2438 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  ( M  x.  B )
)  =  ( ( 2  x.  B )  x.  M ) )
6059oveq1d 6055 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  x.  ( M  x.  B
) )  x.  M
)  =  ( ( ( 2  x.  B
)  x.  M )  x.  M ) )
617sqvald 11475 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
6261oveq2d 6056 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  x.  B )  x.  ( M ^ 2 ) )  =  ( ( 2  x.  B )  x.  ( M  x.  M
) ) )
6356, 60, 623eqtr4d 2446 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( M  x.  B
) )  x.  M
)  =  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )
6453, 63oveq12d 6058 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M ^ 2 )  x.  M )  +  ( ( 2  x.  ( M  x.  B )
)  x.  M ) )  =  ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) ) )
6547, 64eqtrd 2436 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B )
) )  x.  M
)  =  ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) ) )
6665oveq1d 6055 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B
) ) )  x.  M )  +  ( ( B ^ 2 )  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( B ^ 2 )  x.  M ) ) )
6739, 46, 663eqtrd 2440 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( B ^ 2 )  x.  M ) ) )
6867oveq1d 6055 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  +  ( ( B ^ 2 )  x.  M ) )  -  ( ( 4  x.  D )  x.  M ) ) )
69 3nn0 10195 . . . . . . . . . . . . 13  |-  3  e.  NN0
70 expcl 11354 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
717, 69, 70sylancl 644 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
7255, 40mulcld 9064 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  B )  x.  ( M ^ 2 ) )  e.  CC )
7371, 72addcld 9063 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  e.  CC )
7445, 7mulcld 9064 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B ^
2 )  x.  M
)  e.  CC )
75 mulcl 9030 . . . . . . . . . . . . 13  |-  ( ( 4  e.  CC  /\  D  e.  CC )  ->  ( 4  x.  D
)  e.  CC )
7619, 31, 75sylancr 645 . . . . . . . . . . . 12  |-  ( ph  ->  ( 4  x.  D
)  e.  CC )
7776, 7mulcld 9064 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 4  x.  D )  x.  M
)  e.  CC )
7873, 74, 77addsubassd 9387 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( B ^
2 )  x.  M
) )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( B ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) ) ) )
7945, 76, 7subdird 9446 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
)  =  ( ( ( B ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M ) ) )
8079oveq2d 6056 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) ) ) )
8178, 80eqtr4d 2439 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( B ^
2 )  x.  M
) )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) ) )
8245, 76subcld 9367 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B ^
2 )  -  (
4  x.  D ) )  e.  CC )
8382, 7mulcld 9064 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
)  e.  CC )
8473, 83addcld 9063 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  e.  CC )
8526negcld 9354 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( C ^
2 )  e.  CC )
8673, 83, 85addassd 9066 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  +  -u ( C ^ 2 ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M )  + 
-u ( C ^
2 ) ) ) )
8784, 26negsubd 9373 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  +  -u ( C ^ 2 ) )  =  ( ( ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  -  ( C ^
2 ) ) )
88 dquart.3 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( ( B ^
2 )  -  (
4  x.  D ) )  x.  M )  +  -u ( C ^
2 ) ) )  =  0 )
8986, 87, 883eqtr3d 2444 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  -  ( C ^ 2 ) )  =  0 )
9084, 26, 89subeq0d 9375 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  =  ( C ^
2 ) )
9168, 81, 903eqtrd 2440 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) )  =  ( C ^ 2 ) )
9218, 7mulcld 9064 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  e.  CC )
93 subsub23 9266 . . . . . . . . 9  |-  ( ( ( ( ( M  +  B ) ^
2 )  x.  M
)  e.  CC  /\  ( ( 4  x.  D )  x.  M
)  e.  CC  /\  ( C ^ 2 )  e.  CC )  -> 
( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) )  =  ( C ^ 2 )  <-> 
( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) ) )
9492, 77, 26, 93syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) )  =  ( C ^ 2 )  <-> 
( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) ) )
9591, 94mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) )
9620, 31, 7mulassd 9067 . . . . . . 7  |-  ( ph  ->  ( ( 4  x.  D )  x.  M
)  =  ( 4  x.  ( D  x.  M ) ) )
9795, 96eqtrd 2436 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( 4  x.  ( D  x.  M
) ) )
9897oveq1d 6055 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  /  4 )  =  ( ( 4  x.  ( D  x.  M ) )  / 
4 ) )
9992, 26, 20, 23divsubdird 9785 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  /  4 )  =  ( ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4 )  -  ( ( C ^
2 )  /  4
) ) )
10031, 7mulcld 9064 . . . . . 6  |-  ( ph  ->  ( D  x.  M
)  e.  CC )
101100, 20, 23divcan3d 9751 . . . . 5  |-  ( ph  ->  ( ( 4  x.  ( D  x.  M
) )  /  4
)  =  ( D  x.  M ) )
10298, 99, 1013eqtr3d 2444 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  / 
4 )  -  (
( C ^ 2 )  /  4 ) )  =  ( D  x.  M ) )
10332, 36, 1023eqtrd 2440 . . 3  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  / 
4 )  /  M
) )  x.  M
)  =  ( D  x.  M ) )
10430, 31, 7, 28, 103mulcan2ad 9614 . 2  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )
10517, 104eqtrd 2436 1  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721    =/= wne 2567  (class class class)co 6040   CCcc 8944   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    - cmin 9247   -ucneg 9248    / cdiv 9633   2c2 10005   3c3 10006   4c4 10007   NN0cn0 10177   ^cexp 11337
This theorem is referenced by:  dquart  20646
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-n0 10178  df-z 10239  df-uz 10445  df-seq 11279  df-exp 11338
  Copyright terms: Public domain W3C validator