MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem2 Structured version   Unicode version

Theorem dquartlem2 22939
Description: Lemma for dquart 22940. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b  |-  ( ph  ->  B  e.  CC )
dquart.c  |-  ( ph  ->  C  e.  CC )
dquart.x  |-  ( ph  ->  X  e.  CC )
dquart.s  |-  ( ph  ->  S  e.  CC )
dquart.m  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
dquart.m0  |-  ( ph  ->  M  =/=  0 )
dquart.i  |-  ( ph  ->  I  e.  CC )
dquart.i2  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
dquart.d  |-  ( ph  ->  D  e.  CC )
dquart.3  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( ( B ^
2 )  -  (
4  x.  D ) )  x.  M )  +  -u ( C ^
2 ) ) )  =  0 )
Assertion
Ref Expression
dquartlem2  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )

Proof of Theorem dquartlem2
StepHypRef Expression
1 dquart.m . . . . . . 7  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
2 2cn 10606 . . . . . . . . 9  |-  2  e.  CC
3 dquart.s . . . . . . . . 9  |-  ( ph  ->  S  e.  CC )
4 mulcl 9576 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( 2  x.  S
)  e.  CC )
52, 3, 4sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
65sqcld 12276 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  e.  CC )
71, 6eqeltrd 2555 . . . . . 6  |-  ( ph  ->  M  e.  CC )
8 dquart.b . . . . . 6  |-  ( ph  ->  B  e.  CC )
97, 8addcld 9615 . . . . 5  |-  ( ph  ->  ( M  +  B
)  e.  CC )
102a1i 11 . . . . 5  |-  ( ph  ->  2  e.  CC )
11 2ne0 10628 . . . . . 6  |-  2  =/=  0
1211a1i 11 . . . . 5  |-  ( ph  ->  2  =/=  0 )
139, 10, 12sqdivd 12291 . . . 4  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 ) ^ 2 )  =  ( ( ( M  +  B
) ^ 2 )  /  ( 2 ^ 2 ) ) )
14 sq2 12232 . . . . 5  |-  ( 2 ^ 2 )  =  4
1514oveq2i 6295 . . . 4  |-  ( ( ( M  +  B
) ^ 2 )  /  ( 2 ^ 2 ) )  =  ( ( ( M  +  B ) ^
2 )  /  4
)
1613, 15syl6eq 2524 . . 3  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 ) ^ 2 )  =  ( ( ( M  +  B
) ^ 2 )  /  4 ) )
1716oveq1d 6299 . 2  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  ( ( ( ( M  +  B ) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  /  4 )  /  M ) ) )
189sqcld 12276 . . . . 5  |-  ( ph  ->  ( ( M  +  B ) ^ 2 )  e.  CC )
19 4cn 10613 . . . . . 6  |-  4  e.  CC
2019a1i 11 . . . . 5  |-  ( ph  ->  4  e.  CC )
21 4ne0 10632 . . . . . 6  |-  4  =/=  0
2221a1i 11 . . . . 5  |-  ( ph  ->  4  =/=  0 )
2318, 20, 22divcld 10320 . . . 4  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  /  4
)  e.  CC )
24 dquart.c . . . . . . 7  |-  ( ph  ->  C  e.  CC )
2524sqcld 12276 . . . . . 6  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
2625, 20, 22divcld 10320 . . . . 5  |-  ( ph  ->  ( ( C ^
2 )  /  4
)  e.  CC )
27 dquart.m0 . . . . 5  |-  ( ph  ->  M  =/=  0 )
2826, 7, 27divcld 10320 . . . 4  |-  ( ph  ->  ( ( ( C ^ 2 )  / 
4 )  /  M
)  e.  CC )
2923, 28subcld 9930 . . 3  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  e.  CC )
30 dquart.d . . 3  |-  ( ph  ->  D  e.  CC )
3123, 28, 7subdird 10013 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  / 
4 )  /  M
) )  x.  M
)  =  ( ( ( ( ( M  +  B ) ^
2 )  /  4
)  x.  M )  -  ( ( ( ( C ^ 2 )  /  4 )  /  M )  x.  M ) ) )
3218, 7, 20, 22div23d 10357 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4
)  =  ( ( ( ( M  +  B ) ^ 2 )  /  4 )  x.  M ) )
3332eqcomd 2475 . . . . 5  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  x.  M
)  =  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4 ) )
3426, 7, 27divcan1d 10321 . . . . 5  |-  ( ph  ->  ( ( ( ( C ^ 2 )  /  4 )  /  M )  x.  M
)  =  ( ( C ^ 2 )  /  4 ) )
3533, 34oveq12d 6302 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  x.  M )  -  (
( ( ( C ^ 2 )  / 
4 )  /  M
)  x.  M ) )  =  ( ( ( ( ( M  +  B ) ^
2 )  x.  M
)  /  4 )  -  ( ( C ^ 2 )  / 
4 ) ) )
36 binom2 12251 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  B  e.  CC )  ->  ( ( M  +  B ) ^ 2 )  =  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^
2 ) ) )
377, 8, 36syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  +  B ) ^ 2 )  =  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^
2 ) ) )
3837oveq1d 6299 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  =  ( ( ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  +  ( B ^ 2 ) )  x.  M ) )
397sqcld 12276 . . . . . . . . . . . . 13  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
407, 8mulcld 9616 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  x.  B
)  e.  CC )
41 mulcl 9576 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( M  x.  B
)  e.  CC )  ->  ( 2  x.  ( M  x.  B
) )  e.  CC )
422, 40, 41sylancr 663 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( M  x.  B )
)  e.  CC )
4339, 42addcld 9615 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  e.  CC )
448sqcld 12276 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
4543, 44, 7adddird 9621 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B
) ) )  +  ( B ^ 2 ) )  x.  M
)  =  ( ( ( ( M ^
2 )  +  ( 2  x.  ( M  x.  B ) ) )  x.  M )  +  ( ( B ^ 2 )  x.  M ) ) )
4639, 42, 7adddird 9621 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B )
) )  x.  M
)  =  ( ( ( M ^ 2 )  x.  M )  +  ( ( 2  x.  ( M  x.  B ) )  x.  M ) ) )
47 df-3 10595 . . . . . . . . . . . . . . . 16  |-  3  =  ( 2  +  1 )
4847oveq2i 6295 . . . . . . . . . . . . . . 15  |-  ( M ^ 3 )  =  ( M ^ (
2  +  1 ) )
49 2nn0 10812 . . . . . . . . . . . . . . . 16  |-  2  e.  NN0
50 expp1 12141 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  CC  /\  2  e.  NN0 )  -> 
( M ^ (
2  +  1 ) )  =  ( ( M ^ 2 )  x.  M ) )
517, 49, 50sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M ^ (
2  +  1 ) )  =  ( ( M ^ 2 )  x.  M ) )
5248, 51syl5req 2521 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M ^
2 )  x.  M
)  =  ( M ^ 3 ) )
53 mulcl 9576 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
542, 8, 53sylancr 663 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  B
)  e.  CC )
5554, 7, 7mulassd 9619 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2  x.  B )  x.  M )  x.  M
)  =  ( ( 2  x.  B )  x.  ( M  x.  M ) ) )
5610, 7, 8mulassd 9619 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  M )  x.  B
)  =  ( 2  x.  ( M  x.  B ) ) )
5710, 7, 8mul32d 9789 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  M )  x.  B
)  =  ( ( 2  x.  B )  x.  M ) )
5856, 57eqtr3d 2510 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  ( M  x.  B )
)  =  ( ( 2  x.  B )  x.  M ) )
5958oveq1d 6299 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  x.  ( M  x.  B
) )  x.  M
)  =  ( ( ( 2  x.  B
)  x.  M )  x.  M ) )
607sqvald 12275 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
6160oveq2d 6300 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 2  x.  B )  x.  ( M ^ 2 ) )  =  ( ( 2  x.  B )  x.  ( M  x.  M
) ) )
6255, 59, 613eqtr4d 2518 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( M  x.  B
) )  x.  M
)  =  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )
6352, 62oveq12d 6302 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M ^ 2 )  x.  M )  +  ( ( 2  x.  ( M  x.  B )
)  x.  M ) )  =  ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) ) )
6446, 63eqtrd 2508 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B )
) )  x.  M
)  =  ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) ) )
6564oveq1d 6299 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 2 )  +  ( 2  x.  ( M  x.  B
) ) )  x.  M )  +  ( ( B ^ 2 )  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( B ^ 2 )  x.  M ) ) )
6638, 45, 653eqtrd 2512 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( B ^ 2 )  x.  M ) ) )
6766oveq1d 6299 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  +  ( ( B ^ 2 )  x.  M ) )  -  ( ( 4  x.  D )  x.  M ) ) )
68 3nn0 10813 . . . . . . . . . . . . 13  |-  3  e.  NN0
69 expcl 12152 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
707, 68, 69sylancl 662 . . . . . . . . . . . 12  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
7154, 39mulcld 9616 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2  x.  B )  x.  ( M ^ 2 ) )  e.  CC )
7270, 71addcld 9615 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  e.  CC )
7344, 7mulcld 9616 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B ^
2 )  x.  M
)  e.  CC )
74 mulcl 9576 . . . . . . . . . . . . 13  |-  ( ( 4  e.  CC  /\  D  e.  CC )  ->  ( 4  x.  D
)  e.  CC )
7519, 30, 74sylancr 663 . . . . . . . . . . . 12  |-  ( ph  ->  ( 4  x.  D
)  e.  CC )
7675, 7mulcld 9616 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 4  x.  D )  x.  M
)  e.  CC )
7772, 73, 76addsubassd 9950 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( B ^
2 )  x.  M
) )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( B ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) ) ) )
7844, 75, 7subdird 10013 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
)  =  ( ( ( B ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M ) ) )
7978oveq2d 6300 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) ) ) )
8077, 79eqtr4d 2511 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( B ^
2 )  x.  M
) )  -  (
( 4  x.  D
)  x.  M ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) ) )
8144, 75subcld 9930 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B ^
2 )  -  (
4  x.  D ) )  e.  CC )
8281, 7mulcld 9616 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
)  e.  CC )
8372, 82addcld 9615 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  e.  CC )
8425negcld 9917 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( C ^
2 )  e.  CC )
8572, 82, 84addassd 9618 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  +  -u ( C ^ 2 ) )  =  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^
2 ) ) )  +  ( ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M )  + 
-u ( C ^
2 ) ) ) )
8683, 25negsubd 9936 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  +  -u ( C ^ 2 ) )  =  ( ( ( ( M ^
3 )  +  ( ( 2  x.  B
)  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  -  ( C ^
2 ) ) )
87 dquart.3 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( ( B ^
2 )  -  (
4  x.  D ) )  x.  M )  +  -u ( C ^
2 ) ) )  =  0 )
8885, 86, 873eqtr3d 2516 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D
) )  x.  M
) )  -  ( C ^ 2 ) )  =  0 )
8983, 25, 88subeq0d 9938 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M ^ 3 )  +  ( ( 2  x.  B )  x.  ( M ^ 2 ) ) )  +  ( ( ( B ^ 2 )  -  ( 4  x.  D ) )  x.  M ) )  =  ( C ^
2 ) )
9067, 80, 893eqtrd 2512 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  (
( 4  x.  D
)  x.  M ) )  =  ( C ^ 2 ) )
9118, 7mulcld 9616 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B ) ^
2 )  x.  M
)  e.  CC )
92 subsub23 9825 . . . . . . . . 9  |-  ( ( ( ( ( M  +  B ) ^
2 )  x.  M
)  e.  CC  /\  ( ( 4  x.  D )  x.  M
)  e.  CC  /\  ( C ^ 2 )  e.  CC )  -> 
( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) )  =  ( C ^ 2 )  <-> 
( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) ) )
9391, 76, 25, 92syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( ( 4  x.  D )  x.  M
) )  =  ( C ^ 2 )  <-> 
( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) ) )
9490, 93mpbid 210 . . . . . . 7  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( ( 4  x.  D )  x.  M ) )
9520, 30, 7mulassd 9619 . . . . . . 7  |-  ( ph  ->  ( ( 4  x.  D )  x.  M
)  =  ( 4  x.  ( D  x.  M ) ) )
9694, 95eqtrd 2508 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  =  ( 4  x.  ( D  x.  M
) ) )
9796oveq1d 6299 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  /  4 )  =  ( ( 4  x.  ( D  x.  M ) )  / 
4 ) )
9891, 25, 20, 22divsubdird 10359 . . . . 5  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  -  ( C ^ 2 ) )  /  4 )  =  ( ( ( ( ( M  +  B ) ^ 2 )  x.  M )  /  4 )  -  ( ( C ^
2 )  /  4
) ) )
9930, 7mulcld 9616 . . . . . 6  |-  ( ph  ->  ( D  x.  M
)  e.  CC )
10099, 20, 22divcan3d 10325 . . . . 5  |-  ( ph  ->  ( ( 4  x.  ( D  x.  M
) )  /  4
)  =  ( D  x.  M ) )
10197, 98, 1003eqtr3d 2516 . . . 4  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  x.  M )  / 
4 )  -  (
( C ^ 2 )  /  4 ) )  =  ( D  x.  M ) )
10231, 35, 1013eqtrd 2512 . . 3  |-  ( ph  ->  ( ( ( ( ( M  +  B
) ^ 2 )  /  4 )  -  ( ( ( C ^ 2 )  / 
4 )  /  M
) )  x.  M
)  =  ( D  x.  M ) )
10329, 30, 7, 27, 102mulcan2ad 10185 . 2  |-  ( ph  ->  ( ( ( ( M  +  B ) ^ 2 )  / 
4 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )
10417, 103eqtrd 2508 1  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 ) ^
2 )  -  (
( ( C ^
2 )  /  4
)  /  M ) )  =  D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1379    e. wcel 1767    =/= wne 2662  (class class class)co 6284   CCcc 9490   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    - cmin 9805   -ucneg 9806    / cdiv 10206   2c2 10585   3c3 10586   4c4 10587   NN0cn0 10795   ^cexp 12134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-n0 10796  df-z 10865  df-uz 11083  df-seq 12076  df-exp 12135
This theorem is referenced by:  dquart  22940
  Copyright terms: Public domain W3C validator