MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplitlem Structured version   Visualization version   GIF version

Theorem dmdprdsplitlem 18259
Description: Lemma for dmdprdsplit 18269. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
dmdprdsplitlem.0 0 = (0g𝐺)
dmdprdsplitlem.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
dmdprdsplitlem.1 (𝜑𝐺dom DProd 𝑆)
dmdprdsplitlem.2 (𝜑 → dom 𝑆 = 𝐼)
dmdprdsplitlem.3 (𝜑𝐴𝐼)
dmdprdsplitlem.4 (𝜑𝐹𝑊)
dmdprdsplitlem.5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
Assertion
Ref Expression
dmdprdsplitlem ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Distinct variable groups:   0 ,   ,𝑖,𝐴   ,𝐺,𝑖   ,𝐼,𝑖   ,𝐹   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   𝐹(𝑖)   𝑊(,𝑖)   𝑋(,𝑖)   0 (𝑖)

Proof of Theorem dmdprdsplitlem
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplitlem.5 . . . . 5 (𝜑 → (𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)))
2 dmdprdsplitlem.1 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
3 dmdprdsplitlem.2 . . . . . . . 8 (𝜑 → dom 𝑆 = 𝐼)
42, 3dprdf2 18229 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
5 dmdprdsplitlem.3 . . . . . . 7 (𝜑𝐴𝐼)
64, 5fssresd 5984 . . . . . 6 (𝜑 → (𝑆𝐴):𝐴⟶(SubGrp‘𝐺))
7 fdm 5964 . . . . . 6 ((𝑆𝐴):𝐴⟶(SubGrp‘𝐺) → dom (𝑆𝐴) = 𝐴)
8 dmdprdsplitlem.0 . . . . . . 7 0 = (0g𝐺)
9 eqid 2610 . . . . . . 7 {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } = {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 }
108, 9eldprd 18226 . . . . . 6 (dom (𝑆𝐴) = 𝐴 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
116, 7, 103syl 18 . . . . 5 (𝜑 → ((𝐺 Σg 𝐹) ∈ (𝐺 DProd (𝑆𝐴)) ↔ (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
121, 11mpbid 221 . . . 4 (𝜑 → (𝐺dom DProd (𝑆𝐴) ∧ ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
1312simprd 478 . . 3 (𝜑 → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1413adantr 480 . 2 ((𝜑𝑋 ∈ (𝐼𝐴)) → ∃𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
15 simprr 792 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))
1612simpld 474 . . . . . . . . . . 11 (𝜑𝐺dom DProd (𝑆𝐴))
1716ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd (𝑆𝐴))
186, 7syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑆𝐴) = 𝐴)
1918ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom (𝑆𝐴) = 𝐴)
20 simprl 790 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
21 eqid 2610 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
229, 17, 19, 20, 21dprdff 18234 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓:𝐴⟶(Base‘𝐺))
2322feqmptd 6159 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = (𝑛𝐴 ↦ (𝑓𝑛)))
245ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴𝐼)
2524resmptd 5371 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
26 iftrue 4042 . . . . . . . . . 10 (𝑛𝐴 → if(𝑛𝐴, (𝑓𝑛), 0 ) = (𝑓𝑛))
2726mpteq2ia 4668 . . . . . . . . 9 (𝑛𝐴 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐴 ↦ (𝑓𝑛))
2825, 27syl6eq 2660 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴) = (𝑛𝐴 ↦ (𝑓𝑛)))
2923, 28eqtr4d 2647 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴))
3029oveq2d 6565 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝑓) = (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)))
31 eqid 2610 . . . . . . 7 (Cntz‘𝐺) = (Cntz‘𝐺)
322ad2antrr 758 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺dom DProd 𝑆)
33 dprdgrp 18227 . . . . . . . 8 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
34 grpmnd 17252 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
3532, 33, 343syl 18 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐺 ∈ Mnd)
362, 3dprddomcld 18223 . . . . . . . 8 (𝜑𝐼 ∈ V)
3736ad2antrr 758 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐼 ∈ V)
38 dmdprdsplitlem.w . . . . . . . 8 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
393ad2antrr 758 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → dom 𝑆 = 𝐼)
4017adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝐺dom DProd (𝑆𝐴))
4119adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → dom (𝑆𝐴) = 𝐴)
42 simplrl 796 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 })
439, 40, 41, 42dprdfcl 18235 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ ((𝑆𝐴)‘𝑛))
44 fvres 6117 . . . . . . . . . . . 12 (𝑛𝐴 → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4544adantl 481 . . . . . . . . . . 11 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → ((𝑆𝐴)‘𝑛) = (𝑆𝑛))
4643, 45eleqtrd 2690 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ 𝑛𝐴) → (𝑓𝑛) ∈ (𝑆𝑛))
474ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑆:𝐼⟶(SubGrp‘𝐺))
4847ffvelrnda 6267 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → (𝑆𝑛) ∈ (SubGrp‘𝐺))
498subg0cl 17425 . . . . . . . . . . . 12 ((𝑆𝑛) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑛))
5048, 49syl 17 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → 0 ∈ (𝑆𝑛))
5150adantr 480 . . . . . . . . . 10 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) ∧ ¬ 𝑛𝐴) → 0 ∈ (𝑆𝑛))
5246, 51ifclda 4070 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛𝐼) → if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ (𝑆𝑛))
53 mptexg 6389 . . . . . . . . . . . 12 (𝐼 ∈ V → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
5436, 53syl 17 . . . . . . . . . . 11 (𝜑 → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
5554ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V)
56 funmpt 5840 . . . . . . . . . . 11 Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
5756a1i 11 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
589, 17, 19, 20dprdffsupp 18236 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑓 finSupp 0 )
59 simpr 476 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛𝐴)
60 eldifn 3695 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 )) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6160ad2antlr 759 . . . . . . . . . . . . . . 15 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → ¬ 𝑛 ∈ (𝑓 supp 0 ))
6259, 61eldifd 3551 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 )))
63 ssid 3587 . . . . . . . . . . . . . . . . 17 (𝑓 supp 0 ) ⊆ (𝑓 supp 0 )
6463a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑓 supp 0 ) ⊆ (𝑓 supp 0 ))
6536, 5ssexd 4733 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ V)
6665ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐴 ∈ V)
67 fvex 6113 . . . . . . . . . . . . . . . . . 18 (0g𝐺) ∈ V
688, 67eqeltri 2684 . . . . . . . . . . . . . . . . 17 0 ∈ V
6968a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 0 ∈ V)
7022, 64, 66, 69suppssr 7213 . . . . . . . . . . . . . . 15 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
7170adantlr 747 . . . . . . . . . . . . . 14 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛 ∈ (𝐴 ∖ (𝑓 supp 0 ))) → (𝑓𝑛) = 0 )
7262, 71syldan 486 . . . . . . . . . . . . 13 (((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) ∧ 𝑛𝐴) → (𝑓𝑛) = 0 )
7372ifeq1da 4066 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑛𝐴, 0 , 0 ))
74 ifid 4075 . . . . . . . . . . . 12 if(𝑛𝐴, 0 , 0 ) = 0
7573, 74syl6eq 2660 . . . . . . . . . . 11 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼 ∖ (𝑓 supp 0 ))) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
7675, 37suppss2 7216 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))
77 fsuppsssupp 8174 . . . . . . . . . 10 ((((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ V ∧ Fun (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ∧ (𝑓 finSupp 0 ∧ ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ (𝑓 supp 0 ))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7855, 57, 58, 76, 77syl22anc 1319 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) finSupp 0 )
7938, 32, 39, 52, 78dprdwd 18233 . . . . . . . 8 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ∈ 𝑊)
8038, 32, 39, 79, 21dprdff 18234 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )):𝐼⟶(Base‘𝐺))
8138, 32, 39, 79, 31dprdfcntz 18237 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ⊆ ((Cntz‘𝐺)‘ran (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
82 eldifn 3695 . . . . . . . . . 10 (𝑛 ∈ (𝐼𝐴) → ¬ 𝑛𝐴)
8382adantl 481 . . . . . . . . 9 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → ¬ 𝑛𝐴)
8483iffalsed 4047 . . . . . . . 8 ((((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) ∧ 𝑛 ∈ (𝐼𝐴)) → if(𝑛𝐴, (𝑓𝑛), 0 ) = 0 )
8584, 37suppss2 7216 . . . . . . 7 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) supp 0 ) ⊆ 𝐴)
8621, 8, 31, 35, 37, 80, 81, 85, 78gsumzres 18133 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) ↾ 𝐴)) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
8715, 30, 863eqtrd 2648 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
88 dmdprdsplitlem.4 . . . . . . 7 (𝜑𝐹𝑊)
8988ad2antrr 758 . . . . . 6 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹𝑊)
908, 38, 32, 39, 89, 79dprdf11 18245 . . . . 5 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝐺 Σg 𝐹) = (𝐺 Σg (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))) ↔ 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))))
9187, 90mpbid 221 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝐹 = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )))
9291fveq1d 6105 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋))
93 eldifi 3694 . . . . 5 (𝑋 ∈ (𝐼𝐴) → 𝑋𝐼)
9493ad2antlr 759 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → 𝑋𝐼)
95 eleq1 2676 . . . . . 6 (𝑛 = 𝑋 → (𝑛𝐴𝑋𝐴))
96 fveq2 6103 . . . . . 6 (𝑛 = 𝑋 → (𝑓𝑛) = (𝑓𝑋))
9795, 96ifbieq1d 4059 . . . . 5 (𝑛 = 𝑋 → if(𝑛𝐴, (𝑓𝑛), 0 ) = if(𝑋𝐴, (𝑓𝑋), 0 ))
98 eqid 2610 . . . . 5 (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 )) = (𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))
99 fvex 6113 . . . . . 6 (𝑓𝑛) ∈ V
10099, 68ifex 4106 . . . . 5 if(𝑛𝐴, (𝑓𝑛), 0 ) ∈ V
10197, 98, 100fvmpt3i 6196 . . . 4 (𝑋𝐼 → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
10294, 101syl 17 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ((𝑛𝐼 ↦ if(𝑛𝐴, (𝑓𝑛), 0 ))‘𝑋) = if(𝑋𝐴, (𝑓𝑋), 0 ))
103 eldifn 3695 . . . . 5 (𝑋 ∈ (𝐼𝐴) → ¬ 𝑋𝐴)
104103ad2antlr 759 . . . 4 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → ¬ 𝑋𝐴)
105104iffalsed 4047 . . 3 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → if(𝑋𝐴, (𝑓𝑋), 0 ) = 0 )
10692, 102, 1053eqtrd 2648 . 2 (((𝜑𝑋 ∈ (𝐼𝐴)) ∧ (𝑓 ∈ {X𝑖𝐴 ((𝑆𝐴)‘𝑖) ∣ finSupp 0 } ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))) → (𝐹𝑋) = 0 )
10714, 106rexlimddv 3017 1 ((𝜑𝑋 ∈ (𝐼𝐴)) → (𝐹𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  dom cdm 5038  cres 5040  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549   supp csupp 7182  Xcixp 7794   finSupp cfsupp 8158  Basecbs 15695  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Grpcgrp 17245  SubGrpcsubg 17411  Cntzccntz 17571   DProd cdprd 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-gim 17524  df-cntz 17573  df-oppg 17599  df-cmn 18018  df-dprd 18217
This theorem is referenced by:  dprddisj2  18261
  Copyright terms: Public domain W3C validator