MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpaddle Structured version   Visualization version   GIF version

Theorem cxpaddle 24293
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
cxpaddle.1 (𝜑𝐴 ∈ ℝ)
cxpaddle.2 (𝜑 → 0 ≤ 𝐴)
cxpaddle.3 (𝜑𝐵 ∈ ℝ)
cxpaddle.4 (𝜑 → 0 ≤ 𝐵)
cxpaddle.5 (𝜑𝐶 ∈ ℝ+)
cxpaddle.6 (𝜑𝐶 ≤ 1)
Assertion
Ref Expression
cxpaddle (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))

Proof of Theorem cxpaddle
StepHypRef Expression
1 cxpaddle.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
2 cxpaddle.3 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
31, 2readdcld 9948 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
4 cxpaddle.2 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
5 cxpaddle.4 . . . . . . . 8 (𝜑 → 0 ≤ 𝐵)
61, 2, 4, 5addge0d 10482 . . . . . . 7 (𝜑 → 0 ≤ (𝐴 + 𝐵))
7 cxpaddle.5 . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
87rpred 11748 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
93, 6, 8recxpcld 24269 . . . . . 6 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
109adantr 480 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ)
1110recnd 9947 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℂ)
1211mulid2d 9937 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) = ((𝐴 + 𝐵)↑𝑐𝐶))
131adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℝ)
143anim1i 590 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
15 elrp 11710 . . . . . . . 8 ((𝐴 + 𝐵) ∈ ℝ+ ↔ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵)))
1614, 15sylibr 223 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ+)
1713, 16rerpdivcld 11779 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ∈ ℝ)
182adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℝ)
1918, 16rerpdivcld 11779 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ∈ ℝ)
204adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐴)
213adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
22 simpr 476 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 < (𝐴 + 𝐵))
23 divge0 10771 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
2413, 20, 21, 22, 23syl22anc 1319 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐴 / (𝐴 + 𝐵)))
258adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ)
2617, 24, 25recxpcld 24269 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
275adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ 𝐵)
28 divge0 10771 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
2918, 27, 21, 22, 28syl22anc 1319 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 0 ≤ (𝐵 / (𝐴 + 𝐵)))
3019, 29, 25recxpcld 24269 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) ∈ ℝ)
311, 2addge01d 10494 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐵𝐴 ≤ (𝐴 + 𝐵)))
325, 31mpbid 221 . . . . . . . . . 10 (𝜑𝐴 ≤ (𝐴 + 𝐵))
3332adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ (𝐴 + 𝐵))
3421recnd 9947 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℂ)
3534mulid1d 9936 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) · 1) = (𝐴 + 𝐵))
3633, 35breqtrrd 4611 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ≤ ((𝐴 + 𝐵) · 1))
37 1red 9934 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ∈ ℝ)
38 ledivmul 10778 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
3913, 37, 21, 22, 38syl112anc 1322 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐴 ≤ ((𝐴 + 𝐵) · 1)))
4036, 39mpbird 246 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ 1)
417adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℝ+)
42 cxpaddle.6 . . . . . . . 8 (𝜑𝐶 ≤ 1)
4342adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ≤ 1)
4417, 24, 40, 41, 43cxpaddlelem 24292 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 / (𝐴 + 𝐵)) ≤ ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶))
452, 1addge02d 10495 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
464, 45mpbid 221 . . . . . . . . . 10 (𝜑𝐵 ≤ (𝐴 + 𝐵))
4746adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ (𝐴 + 𝐵))
4847, 35breqtrrd 4611 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ≤ ((𝐴 + 𝐵) · 1))
49 ledivmul 10778 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 + 𝐵) ∈ ℝ ∧ 0 < (𝐴 + 𝐵))) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5018, 37, 21, 22, 49syl112anc 1322 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵)) ≤ 1 ↔ 𝐵 ≤ ((𝐴 + 𝐵) · 1)))
5148, 50mpbird 246 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ 1)
5219, 29, 51, 41, 43cxpaddlelem 24292 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵 / (𝐴 + 𝐵)) ≤ ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶))
5317, 19, 26, 30, 44, 52le2addd 10525 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) ≤ (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)))
5413recnd 9947 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℂ)
5518recnd 9947 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℂ)
5616rpne0d 11753 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ≠ 0)
5754, 55, 34, 56divdird 10718 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))))
5834, 56dividd 10678 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵) / (𝐴 + 𝐵)) = 1)
5957, 58eqtr3d 2646 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵)) + (𝐵 / (𝐴 + 𝐵))) = 1)
608recnd 9947 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 𝐶 ∈ ℂ)
6213, 20, 16, 61divcxpd 24268 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6318, 27, 16, 61divcxpd 24268 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶) = ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)))
6462, 63oveq12d 6567 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
651, 4, 8recxpcld 24269 . . . . . . . . 9 (𝜑 → (𝐴𝑐𝐶) ∈ ℝ)
6665recnd 9947 . . . . . . . 8 (𝜑 → (𝐴𝑐𝐶) ∈ ℂ)
6766adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐴𝑐𝐶) ∈ ℂ)
682, 5, 8recxpcld 24269 . . . . . . . . 9 (𝜑 → (𝐵𝑐𝐶) ∈ ℝ)
6968recnd 9947 . . . . . . . 8 (𝜑 → (𝐵𝑐𝐶) ∈ ℂ)
7069adantr 480 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (𝐵𝑐𝐶) ∈ ℂ)
7116, 25rpcxpcld 24276 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ∈ ℝ+)
7271rpne0d 11753 . . . . . . 7 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≠ 0)
7367, 70, 11, 72divdird 10718 . . . . . 6 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)) = (((𝐴𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶)) + ((𝐵𝑐𝐶) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7464, 73eqtr4d 2647 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (((𝐴 / (𝐴 + 𝐵))↑𝑐𝐶) + ((𝐵 / (𝐴 + 𝐵))↑𝑐𝐶)) = (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7553, 59, 743brtr3d 4614 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶)))
7665, 68readdcld 9948 . . . . . 6 (𝜑 → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7776adantr 480 . . . . 5 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ∈ ℝ)
7837, 77, 71lemuldivd 11797 . . . 4 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ 1 ≤ (((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) / ((𝐴 + 𝐵)↑𝑐𝐶))))
7975, 78mpbird 246 . . 3 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → (1 · ((𝐴 + 𝐵)↑𝑐𝐶)) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8012, 79eqbrtrrd 4607 . 2 ((𝜑 ∧ 0 < (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
817rpne0d 11753 . . . . . 6 (𝜑𝐶 ≠ 0)
8260, 810cxpd 24256 . . . . 5 (𝜑 → (0↑𝑐𝐶) = 0)
831, 4, 8cxpge0d 24270 . . . . . 6 (𝜑 → 0 ≤ (𝐴𝑐𝐶))
842, 5, 8cxpge0d 24270 . . . . . 6 (𝜑 → 0 ≤ (𝐵𝑐𝐶))
8565, 68, 83, 84addge0d 10482 . . . . 5 (𝜑 → 0 ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
8682, 85eqbrtrd 4605 . . . 4 (𝜑 → (0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
87 oveq1 6556 . . . . 5 (0 = (𝐴 + 𝐵) → (0↑𝑐𝐶) = ((𝐴 + 𝐵)↑𝑐𝐶))
8887breq1d 4593 . . . 4 (0 = (𝐴 + 𝐵) → ((0↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)) ↔ ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
8986, 88syl5ibcom 234 . . 3 (𝜑 → (0 = (𝐴 + 𝐵) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶))))
9089imp 444 . 2 ((𝜑 ∧ 0 = (𝐴 + 𝐵)) → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
91 0re 9919 . . . 4 0 ∈ ℝ
92 leloe 10003 . . . 4 ((0 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ) → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
9391, 3, 92sylancr 694 . . 3 (𝜑 → (0 ≤ (𝐴 + 𝐵) ↔ (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵))))
946, 93mpbid 221 . 2 (𝜑 → (0 < (𝐴 + 𝐵) ∨ 0 = (𝐴 + 𝐵)))
9580, 90, 94mpjaodan 823 1 (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) ≤ ((𝐴𝑐𝐶) + (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563  +crp 11708  𝑐ccxp 24106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108
This theorem is referenced by:  abvcxp  25104
  Copyright terms: Public domain W3C validator