MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcomlem Structured version   Visualization version   GIF version

Theorem cnfcomlem 8479
Description: Lemma for cnfcom 8480. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
cnfcom.t 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
cnfcom.1 (𝜑𝐼 ∈ dom 𝐺)
cnfcom.2 (𝜑𝑂 ∈ (ω ↑𝑜 (𝐺𝐼)))
cnfcom.3 (𝜑 → (𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂)
Assertion
Ref Expression
cnfcomlem (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑘,𝐼,𝑥,𝑧   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑓,𝑘)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐼(𝑓)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑂(𝑥,𝑧,𝑓,𝑘)

Proof of Theorem cnfcomlem
Dummy variables 𝑢 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 8426 . . . . . . 7 ω ∈ On
2 cnfcom.a . . . . . . . 8 (𝜑𝐴 ∈ On)
3 suppssdm 7195 . . . . . . . . . 10 (𝐹 supp ∅) ⊆ dom 𝐹
4 cnfcom.f . . . . . . . . . . . . . 14 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.s . . . . . . . . . . . . . . . . 17 𝑆 = dom (ω CNF 𝐴)
61a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ω ∈ On)
75, 6, 2cantnff1o 8476 . . . . . . . . . . . . . . . 16 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴))
8 f1ocnv 6062 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑𝑜 𝐴) → (ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆)
9 f1of 6050 . . . . . . . . . . . . . . . 16 ((ω CNF 𝐴):(ω ↑𝑜 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
107, 8, 93syl 18 . . . . . . . . . . . . . . 15 (𝜑(ω CNF 𝐴):(ω ↑𝑜 𝐴)⟶𝑆)
11 cnfcom.b . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ (ω ↑𝑜 𝐴))
1210, 11ffvelrnd 6268 . . . . . . . . . . . . . 14 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
134, 12syl5eqel 2692 . . . . . . . . . . . . 13 (𝜑𝐹𝑆)
145, 6, 2cantnfs 8446 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑆 ↔ (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅)))
1513, 14mpbid 221 . . . . . . . . . . . 12 (𝜑 → (𝐹:𝐴⟶ω ∧ 𝐹 finSupp ∅))
1615simpld 474 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ω)
17 fdm 5964 . . . . . . . . . . 11 (𝐹:𝐴⟶ω → dom 𝐹 = 𝐴)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
193, 18syl5sseq 3616 . . . . . . . . 9 (𝜑 → (𝐹 supp ∅) ⊆ 𝐴)
20 cnfcom.1 . . . . . . . . . 10 (𝜑𝐼 ∈ dom 𝐺)
21 cnfcom.g . . . . . . . . . . . 12 𝐺 = OrdIso( E , (𝐹 supp ∅))
2221oif 8318 . . . . . . . . . . 11 𝐺:dom 𝐺⟶(𝐹 supp ∅)
2322ffvelrni 6266 . . . . . . . . . 10 (𝐼 ∈ dom 𝐺 → (𝐺𝐼) ∈ (𝐹 supp ∅))
2420, 23syl 17 . . . . . . . . 9 (𝜑 → (𝐺𝐼) ∈ (𝐹 supp ∅))
2519, 24sseldd 3569 . . . . . . . 8 (𝜑 → (𝐺𝐼) ∈ 𝐴)
26 onelon 5665 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐺𝐼) ∈ 𝐴) → (𝐺𝐼) ∈ On)
272, 25, 26syl2anc 691 . . . . . . 7 (𝜑 → (𝐺𝐼) ∈ On)
28 oecl 7504 . . . . . . 7 ((ω ∈ On ∧ (𝐺𝐼) ∈ On) → (ω ↑𝑜 (𝐺𝐼)) ∈ On)
291, 27, 28sylancr 694 . . . . . 6 (𝜑 → (ω ↑𝑜 (𝐺𝐼)) ∈ On)
3016, 25ffvelrnd 6268 . . . . . . 7 (𝜑 → (𝐹‘(𝐺𝐼)) ∈ ω)
31 nnon 6963 . . . . . . 7 ((𝐹‘(𝐺𝐼)) ∈ ω → (𝐹‘(𝐺𝐼)) ∈ On)
3230, 31syl 17 . . . . . 6 (𝜑 → (𝐹‘(𝐺𝐼)) ∈ On)
33 omcl 7503 . . . . . 6 (((ω ↑𝑜 (𝐺𝐼)) ∈ On ∧ (𝐹‘(𝐺𝐼)) ∈ On) → ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ∈ On)
3429, 32, 33syl2anc 691 . . . . 5 (𝜑 → ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ∈ On)
355, 6, 2, 21, 13cantnfcl 8447 . . . . . . . 8 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω))
3635simprd 478 . . . . . . 7 (𝜑 → dom 𝐺 ∈ ω)
37 elnn 6967 . . . . . . 7 ((𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω) → 𝐼 ∈ ω)
3820, 36, 37syl2anc 691 . . . . . 6 (𝜑𝐼 ∈ ω)
39 cnfcom.h . . . . . . . 8 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅)
4039cantnfvalf 8445 . . . . . . 7 𝐻:ω⟶On
4140ffvelrni 6266 . . . . . 6 (𝐼 ∈ ω → (𝐻𝐼) ∈ On)
4238, 41syl 17 . . . . 5 (𝜑 → (𝐻𝐼) ∈ On)
43 eqid 2610 . . . . . 6 ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))) = ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦)))
4443oacomf1o 7532 . . . . 5 ((((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ∈ On ∧ (𝐻𝐼) ∈ On) → ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))))
4534, 42, 44syl2anc 691 . . . 4 (𝜑 → ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))))
46 cnfcom.t . . . . . . . 8 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
4746seqomsuc 7439 . . . . . . 7 (𝐼 ∈ ω → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)))
4838, 47syl 17 . . . . . 6 (𝜑 → (𝑇‘suc 𝐼) = (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)))
49 nfcv 2751 . . . . . . . . 9 𝑢𝐾
50 nfcv 2751 . . . . . . . . 9 𝑣𝐾
51 nfcv 2751 . . . . . . . . 9 𝑘((𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦)))
52 nfcv 2751 . . . . . . . . 9 𝑓((𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦)))
53 cnfcom.k . . . . . . . . . 10 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)))
54 oveq2 6557 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (dom 𝑓 +𝑜 𝑥) = (dom 𝑓 +𝑜 𝑦))
5554cbvmptv 4678 . . . . . . . . . . . 12 (𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) = (𝑦𝑀 ↦ (dom 𝑓 +𝑜 𝑦))
56 cnfcom.m . . . . . . . . . . . . . 14 𝑀 = ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘)))
57 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑘 = 𝑢)
5857fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝐺𝑘) = (𝐺𝑢))
5958oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → (ω ↑𝑜 (𝐺𝑘)) = (ω ↑𝑜 (𝐺𝑢)))
6058fveq2d 6107 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝐹‘(𝐺𝑘)) = (𝐹‘(𝐺𝑢)))
6159, 60oveq12d 6567 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → ((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) = ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))))
6256, 61syl5eq 2656 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑀 = ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))))
63 simpr 476 . . . . . . . . . . . . . . 15 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝑓 = 𝑣)
6463dmeqd 5248 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → dom 𝑓 = dom 𝑣)
6564oveq1d 6564 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → (dom 𝑓 +𝑜 𝑦) = (dom 𝑣 +𝑜 𝑦))
6662, 65mpteq12dv 4663 . . . . . . . . . . . 12 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑦𝑀 ↦ (dom 𝑓 +𝑜 𝑦)) = (𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)))
6755, 66syl5eq 2656 . . . . . . . . . . 11 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) = (𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)))
68 oveq2 6557 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑀 +𝑜 𝑥) = (𝑀 +𝑜 𝑦))
6968cbvmptv 4678 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)) = (𝑦 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑦))
7062oveq1d 6564 . . . . . . . . . . . . . 14 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑀 +𝑜 𝑦) = (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦))
7164, 70mpteq12dv 4663 . . . . . . . . . . . . 13 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑦 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑦)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦)))
7269, 71syl5eq 2656 . . . . . . . . . . . 12 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦)))
7372cnveqd 5220 . . . . . . . . . . 11 ((𝑘 = 𝑢𝑓 = 𝑣) → (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥)) = (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦)))
7467, 73uneq12d 3730 . . . . . . . . . 10 ((𝑘 = 𝑢𝑓 = 𝑣) → ((𝑥𝑀 ↦ (dom 𝑓 +𝑜 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +𝑜 𝑥))) = ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦))))
7553, 74syl5eq 2656 . . . . . . . . 9 ((𝑘 = 𝑢𝑓 = 𝑣) → 𝐾 = ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦))))
7649, 50, 51, 52, 75cbvmpt2 6632 . . . . . . . 8 (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦))))
7776a1i 11 . . . . . . 7 (𝜑 → (𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾) = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦)))))
78 simprl 790 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → 𝑢 = 𝐼)
7978fveq2d 6107 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝐺𝑢) = (𝐺𝐼))
8079oveq2d 6565 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (ω ↑𝑜 (𝐺𝑢)) = (ω ↑𝑜 (𝐺𝐼)))
8179fveq2d 6107 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝐹‘(𝐺𝑢)) = (𝐹‘(𝐺𝐼)))
8280, 81oveq12d 6567 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) = ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))
83 simpr 476 . . . . . . . . . . . 12 ((𝑢 = 𝐼𝑣 = (𝑇𝐼)) → 𝑣 = (𝑇𝐼))
8483dmeqd 5248 . . . . . . . . . . 11 ((𝑢 = 𝐼𝑣 = (𝑇𝐼)) → dom 𝑣 = dom (𝑇𝐼))
85 cnfcom.3 . . . . . . . . . . . 12 (𝜑 → (𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂)
86 f1odm 6054 . . . . . . . . . . . 12 ((𝑇𝐼):(𝐻𝐼)–1-1-onto𝑂 → dom (𝑇𝐼) = (𝐻𝐼))
8785, 86syl 17 . . . . . . . . . . 11 (𝜑 → dom (𝑇𝐼) = (𝐻𝐼))
8884, 87sylan9eqr 2666 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → dom 𝑣 = (𝐻𝐼))
8988oveq1d 6564 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (dom 𝑣 +𝑜 𝑦) = ((𝐻𝐼) +𝑜 𝑦))
9082, 89mpteq12dv 4663 . . . . . . . 8 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)) = (𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)))
9182oveq1d 6564 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦) = (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))
9288, 91mpteq12dv 4663 . . . . . . . . 9 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦)) = (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦)))
9392cnveqd 5220 . . . . . . . 8 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦)) = (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦)))
9490, 93uneq12d 3730 . . . . . . 7 ((𝜑 ∧ (𝑢 = 𝐼𝑣 = (𝑇𝐼))) → ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) ↦ (dom 𝑣 +𝑜 𝑦)) ∪ (𝑦 ∈ dom 𝑣 ↦ (((ω ↑𝑜 (𝐺𝑢)) ·𝑜 (𝐹‘(𝐺𝑢))) +𝑜 𝑦))) = ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))))
95 elex 3185 . . . . . . . 8 (𝐼 ∈ dom 𝐺𝐼 ∈ V)
9620, 95syl 17 . . . . . . 7 (𝜑𝐼 ∈ V)
97 fvex 6113 . . . . . . . 8 (𝑇𝐼) ∈ V
9897a1i 11 . . . . . . 7 (𝜑 → (𝑇𝐼) ∈ V)
99 ovex 6577 . . . . . . . . . 10 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ∈ V
10099mptex 6390 . . . . . . . . 9 (𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∈ V
101 fvex 6113 . . . . . . . . . . 11 (𝐻𝐼) ∈ V
102101mptex 6390 . . . . . . . . . 10 (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦)) ∈ V
103102cnvex 7006 . . . . . . . . 9 (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦)) ∈ V
104100, 103unex 6854 . . . . . . . 8 ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))) ∈ V
105104a1i 11 . . . . . . 7 (𝜑 → ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))) ∈ V)
10677, 94, 96, 98, 105ovmpt2d 6686 . . . . . 6 (𝜑 → (𝐼(𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾)(𝑇𝐼)) = ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))))
10748, 106eqtrd 2644 . . . . 5 (𝜑 → (𝑇‘suc 𝐼) = ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))))
108 f1oeq1 6040 . . . . 5 ((𝑇‘suc 𝐼) = ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))) → ((𝑇‘suc 𝐼):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) ↔ ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))))
109107, 108syl 17 . . . 4 (𝜑 → ((𝑇‘suc 𝐼):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) ↔ ((𝑦 ∈ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ↦ ((𝐻𝐼) +𝑜 𝑦)) ∪ (𝑦 ∈ (𝐻𝐼) ↦ (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 𝑦))):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))))
11045, 109mpbird 246 . . 3 (𝜑 → (𝑇‘suc 𝐼):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))))
1111a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → ω ∈ On)
112 simpl 472 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → 𝐴 ∈ On)
113 simpr 476 . . . . . 6 ((𝐴 ∈ On ∧ 𝐹𝑆) → 𝐹𝑆)
11456oveq1i 6559 . . . . . . . . . 10 (𝑀 +𝑜 𝑧) = (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)
115114a1i 11 . . . . . . . . 9 ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +𝑜 𝑧) = (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))
116115mpt2eq3ia 6618 . . . . . . . 8 (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))
117 eqid 2610 . . . . . . . 8 ∅ = ∅
118 seqomeq12 7436 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ∧ ∅ = ∅) → seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅))
119116, 117, 118mp2an 704 . . . . . . 7 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
12039, 119eqtri 2632 . . . . . 6 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
1215, 111, 112, 21, 113, 120cantnfsuc 8450 . . . . 5 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ 𝐼 ∈ ω) → (𝐻‘suc 𝐼) = (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼)))
1222, 13, 38, 121syl21anc 1317 . . . 4 (𝜑 → (𝐻‘suc 𝐼) = (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼)))
123 f1oeq2 6041 . . . 4 ((𝐻‘suc 𝐼) = (((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼)) → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) ↔ (𝑇‘suc 𝐼):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))))
124122, 123syl 17 . . 3 (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) ↔ (𝑇‘suc 𝐼):(((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) +𝑜 (𝐻𝐼))–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))))
125110, 124mpbird 246 . 2 (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))))
126 sssucid 5719 . . . . . 6 dom 𝐺 ⊆ suc dom 𝐺
127126, 20sseldi 3566 . . . . 5 (𝜑𝐼 ∈ suc dom 𝐺)
128 epelg 4950 . . . . . . . . . . 11 (𝐼 ∈ dom 𝐺 → (𝑦 E 𝐼𝑦𝐼))
12920, 128syl 17 . . . . . . . . . 10 (𝜑 → (𝑦 E 𝐼𝑦𝐼))
130129biimpar 501 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑦 E 𝐼)
1312, 19ssexd 4733 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp ∅) ∈ V)
13235simpld 474 . . . . . . . . . . . 12 (𝜑 → E We (𝐹 supp ∅))
13321oiiso 8325 . . . . . . . . . . . 12 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
134131, 132, 133syl2anc 691 . . . . . . . . . . 11 (𝜑𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
135134adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)))
13621oicl 8317 . . . . . . . . . . . 12 Ord dom 𝐺
137 ordelss 5656 . . . . . . . . . . . 12 ((Ord dom 𝐺𝐼 ∈ dom 𝐺) → 𝐼 ⊆ dom 𝐺)
138136, 20, 137sylancr 694 . . . . . . . . . . 11 (𝜑𝐼 ⊆ dom 𝐺)
139138sselda 3568 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝑦 ∈ dom 𝐺)
14020adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝐼 ∈ dom 𝐺)
141 isorel 6476 . . . . . . . . . 10 ((𝐺 Isom E , E (dom 𝐺, (𝐹 supp ∅)) ∧ (𝑦 ∈ dom 𝐺𝐼 ∈ dom 𝐺)) → (𝑦 E 𝐼 ↔ (𝐺𝑦) E (𝐺𝐼)))
142135, 139, 140, 141syl12anc 1316 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑦 E 𝐼 ↔ (𝐺𝑦) E (𝐺𝐼)))
143130, 142mpbid 221 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝐺𝑦) E (𝐺𝐼))
144 fvex 6113 . . . . . . . . 9 (𝐺𝐼) ∈ V
145144epelc 4951 . . . . . . . 8 ((𝐺𝑦) E (𝐺𝐼) ↔ (𝐺𝑦) ∈ (𝐺𝐼))
146143, 145sylib 207 . . . . . . 7 ((𝜑𝑦𝐼) → (𝐺𝑦) ∈ (𝐺𝐼))
147146ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼))
148 ffun 5961 . . . . . . . 8 (𝐺:dom 𝐺⟶(𝐹 supp ∅) → Fun 𝐺)
14922, 148ax-mp 5 . . . . . . 7 Fun 𝐺
150 funimass4 6157 . . . . . . 7 ((Fun 𝐺𝐼 ⊆ dom 𝐺) → ((𝐺𝐼) ⊆ (𝐺𝐼) ↔ ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼)))
151149, 138, 150sylancr 694 . . . . . 6 (𝜑 → ((𝐺𝐼) ⊆ (𝐺𝐼) ↔ ∀𝑦𝐼 (𝐺𝑦) ∈ (𝐺𝐼)))
152147, 151mpbird 246 . . . . 5 (𝜑 → (𝐺𝐼) ⊆ (𝐺𝐼))
1531a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → ω ∈ On)
154 simpll 786 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐴 ∈ On)
155 simplr 788 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐹𝑆)
156 peano1 6977 . . . . . . 7 ∅ ∈ ω
157156a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → ∅ ∈ ω)
158 simpr1 1060 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → 𝐼 ∈ suc dom 𝐺)
159 simpr2 1061 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐺𝐼) ∈ On)
160 simpr3 1062 . . . . . 6 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐺𝐼) ⊆ (𝐺𝐼))
1615, 153, 154, 21, 155, 120, 157, 158, 159, 160cantnflt 8452 . . . . 5 (((𝐴 ∈ On ∧ 𝐹𝑆) ∧ (𝐼 ∈ suc dom 𝐺 ∧ (𝐺𝐼) ∈ On ∧ (𝐺𝐼) ⊆ (𝐺𝐼))) → (𝐻𝐼) ∈ (ω ↑𝑜 (𝐺𝐼)))
1622, 13, 127, 27, 152, 161syl23anc 1325 . . . 4 (𝜑 → (𝐻𝐼) ∈ (ω ↑𝑜 (𝐺𝐼)))
163 ffn 5958 . . . . . . . . . 10 (𝐹:𝐴⟶ω → 𝐹 Fn 𝐴)
16416, 163syl 17 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
165 0ex 4718 . . . . . . . . . 10 ∅ ∈ V
166165a1i 11 . . . . . . . . 9 (𝜑 → ∅ ∈ V)
167 elsuppfn 7190 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ On ∧ ∅ ∈ V) → ((𝐺𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅)))
168164, 2, 166, 167syl3anc 1318 . . . . . . . 8 (𝜑 → ((𝐺𝐼) ∈ (𝐹 supp ∅) ↔ ((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅)))
169 simpr 476 . . . . . . . 8 (((𝐺𝐼) ∈ 𝐴 ∧ (𝐹‘(𝐺𝐼)) ≠ ∅) → (𝐹‘(𝐺𝐼)) ≠ ∅)
170168, 169syl6bi 242 . . . . . . 7 (𝜑 → ((𝐺𝐼) ∈ (𝐹 supp ∅) → (𝐹‘(𝐺𝐼)) ≠ ∅))
17124, 170mpd 15 . . . . . 6 (𝜑 → (𝐹‘(𝐺𝐼)) ≠ ∅)
172 on0eln0 5697 . . . . . . 7 ((𝐹‘(𝐺𝐼)) ∈ On → (∅ ∈ (𝐹‘(𝐺𝐼)) ↔ (𝐹‘(𝐺𝐼)) ≠ ∅))
17332, 172syl 17 . . . . . 6 (𝜑 → (∅ ∈ (𝐹‘(𝐺𝐼)) ↔ (𝐹‘(𝐺𝐼)) ≠ ∅))
174171, 173mpbird 246 . . . . 5 (𝜑 → ∅ ∈ (𝐹‘(𝐺𝐼)))
175 omword1 7540 . . . . 5 ((((ω ↑𝑜 (𝐺𝐼)) ∈ On ∧ (𝐹‘(𝐺𝐼)) ∈ On) ∧ ∅ ∈ (𝐹‘(𝐺𝐼))) → (ω ↑𝑜 (𝐺𝐼)) ⊆ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))
17629, 32, 174, 175syl21anc 1317 . . . 4 (𝜑 → (ω ↑𝑜 (𝐺𝐼)) ⊆ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))
177 oaabs2 7612 . . . 4 ((((𝐻𝐼) ∈ (ω ↑𝑜 (𝐺𝐼)) ∧ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) ∈ On) ∧ (ω ↑𝑜 (𝐺𝐼)) ⊆ ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) → ((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) = ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))
178162, 34, 176, 177syl21anc 1317 . . 3 (𝜑 → ((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) = ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))
179 f1oeq3 6042 . . 3 (((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) = ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))) → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) ↔ (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))))
180178, 179syl 17 . 2 (𝜑 → ((𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((𝐻𝐼) +𝑜 ((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))) ↔ (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼)))))
181125, 180mpbid 221 1 (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑𝑜 (𝐺𝐼)) ·𝑜 (𝐹‘(𝐺𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cun 3538  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643   E cep 4947   We wwe 4996  ccnv 5037  dom cdm 5038  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  (class class class)co 6549  cmpt2 6551  ωcom 6957   supp csupp 7182  seq𝜔cseqom 7429   +𝑜 coa 7444   ·𝑜 comu 7445  𝑜 coe 7446   finSupp cfsupp 8158  OrdIsocoi 8297   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442
This theorem is referenced by:  cnfcom  8480
  Copyright terms: Public domain W3C validator