Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqomeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqomeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → seq𝜔(𝐴, 𝐶) = seq𝜔(𝐵, 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 6555 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝑎𝐴𝑏) = (𝑎𝐵𝑏)) | |
2 | 1 | opeq2d 4347 | . . . . 5 ⊢ (𝐴 = 𝐵 → 〈suc 𝑎, (𝑎𝐴𝑏)〉 = 〈suc 𝑎, (𝑎𝐵𝑏)〉) |
3 | 2 | mpt2eq3dv 6619 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉)) |
4 | fveq2 6103 | . . . . 5 ⊢ (𝐶 = 𝐷 → ( I ‘𝐶) = ( I ‘𝐷)) | |
5 | 4 | opeq2d 4347 | . . . 4 ⊢ (𝐶 = 𝐷 → 〈∅, ( I ‘𝐶)〉 = 〈∅, ( I ‘𝐷)〉) |
6 | rdgeq12 7396 | . . . 4 ⊢ (((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉) ∧ 〈∅, ( I ‘𝐶)〉 = 〈∅, ( I ‘𝐷)〉) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉), 〈∅, ( I ‘𝐶)〉) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉), 〈∅, ( I ‘𝐷)〉)) | |
7 | 3, 5, 6 | syl2an 493 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉), 〈∅, ( I ‘𝐶)〉) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉), 〈∅, ( I ‘𝐷)〉)) |
8 | 7 | imaeq1d 5384 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉), 〈∅, ( I ‘𝐶)〉) “ ω) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉), 〈∅, ( I ‘𝐷)〉) “ ω)) |
9 | df-seqom 7430 | . 2 ⊢ seq𝜔(𝐴, 𝐶) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐴𝑏)〉), 〈∅, ( I ‘𝐶)〉) “ ω) | |
10 | df-seqom 7430 | . 2 ⊢ seq𝜔(𝐵, 𝐷) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐵𝑏)〉), 〈∅, ( I ‘𝐷)〉) “ ω) | |
11 | 8, 9, 10 | 3eqtr4g 2669 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → seq𝜔(𝐴, 𝐶) = seq𝜔(𝐵, 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 Vcvv 3173 ∅c0 3874 〈cop 4131 I cid 4948 “ cima 5041 suc csuc 5642 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 ωcom 6957 reccrdg 7392 seq𝜔cseqom 7429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-iota 5768 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-seqom 7430 |
This theorem is referenced by: cantnffval 8443 cantnfval 8448 cantnfres 8457 cnfcomlem 8479 cnfcom2 8482 fin23lem33 9050 |
Copyright terms: Public domain | W3C validator |