MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1o Structured version   Visualization version   GIF version

Theorem oacomf1o 7532
Description: Define a bijection from 𝐴 +𝑜 𝐵 to 𝐵 +𝑜 𝐴. Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g. oancom 8431). (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1o.1 𝐹 = ((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
Assertion
Ref Expression
oacomf1o ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(𝐵 +𝑜 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem oacomf1o
StepHypRef Expression
1 eqid 2610 . . . . . . 7 (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) = (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥))
21oacomf1olem 7531 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∧ (ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∩ 𝐵) = ∅))
32simpld 474 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)))
4 eqid 2610 . . . . . . . . 9 (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) = (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))
54oacomf1olem 7531 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅))
65ancoms 468 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅))
76simpld 474 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
8 f1ocnv 6062 . . . . . 6 ((𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) → (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))–1-1-onto𝐵)
97, 8syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))–1-1-onto𝐵)
10 incom 3767 . . . . . 6 (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴)
116simprd 478 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)) ∩ 𝐴) = ∅)
1210, 11syl5eq 2656 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = ∅)
132simprd 478 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∩ 𝐵) = ∅)
14 f1oun 6069 . . . . 5 ((((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)):𝐴1-1-onto→ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∧ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)):ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))–1-1-onto𝐵) ∧ ((𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) = ∅ ∧ (ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∩ 𝐵) = ∅)) → ((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵))
153, 9, 12, 13, 14syl22anc 1319 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵))
16 oacomf1o.1 . . . . 5 𝐹 = ((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))
17 f1oeq1 6040 . . . . 5 (𝐹 = ((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) → (𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵) ↔ ((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵)))
1816, 17ax-mp 5 . . . 4 (𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵) ↔ ((𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))):(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵))
1915, 18sylibr 223 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵))
20 oarec 7529 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))))
21 f1oeq2 6041 . . . 4 ((𝐴 +𝑜 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥))) → (𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵) ↔ 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵)))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵) ↔ 𝐹:(𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +𝑜 𝑥)))–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵)))
2319, 22mpbird 246 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵))
24 oarec 7529 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 +𝑜 𝐴) = (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥))))
2524ancoms 468 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 𝐴) = (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥))))
26 uncom 3719 . . . 4 (𝐵 ∪ ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥))) = (ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵)
2725, 26syl6eq 2660 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 𝐴) = (ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵))
28 f1oeq3 6042 . . 3 ((𝐵 +𝑜 𝐴) = (ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵) → (𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(𝐵 +𝑜 𝐴) ↔ 𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵)))
2927, 28syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(𝐵 +𝑜 𝐴) ↔ 𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(ran (𝑥𝐴 ↦ (𝐵 +𝑜 𝑥)) ∪ 𝐵)))
3023, 29mpbird 246 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:(𝐴 +𝑜 𝐵)–1-1-onto→(𝐵 +𝑜 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cun 3538  cin 3539  c0 3874  cmpt 4643  ccnv 5037  ran crn 5039  Oncon0 5640  1-1-ontowf1o 5803  (class class class)co 6549   +𝑜 coa 7444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451
This theorem is referenced by:  cnfcomlem  8479
  Copyright terms: Public domain W3C validator