MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oef1o Structured version   Visualization version   GIF version

Theorem oef1o 8478
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption (𝐹‘∅) = ∅ can be discharged using fveqf1o 6457.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
oef1o.f (𝜑𝐹:𝐴1-1-onto𝐶)
oef1o.g (𝜑𝐺:𝐵1-1-onto𝐷)
oef1o.a (𝜑𝐴 ∈ (On ∖ 1𝑜))
oef1o.b (𝜑𝐵 ∈ On)
oef1o.c (𝜑𝐶 ∈ On)
oef1o.d (𝜑𝐷 ∈ On)
oef1o.z (𝜑 → (𝐹‘∅) = ∅)
oef1o.k 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
oef1o.h 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
Assertion
Ref Expression
oef1o (𝜑𝐻:(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem oef1o
StepHypRef Expression
1 eqid 2610 . . . . 5 dom (𝐶 CNF 𝐷) = dom (𝐶 CNF 𝐷)
2 oef1o.c . . . . 5 (𝜑𝐶 ∈ On)
3 oef1o.d . . . . 5 (𝜑𝐷 ∈ On)
41, 2, 3cantnff1o 8476 . . . 4 (𝜑 → (𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶𝑜 𝐷))
5 eqid 2610 . . . . . . . 8 {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}
6 eqid 2610 . . . . . . . 8 {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}
7 eqid 2610 . . . . . . . 8 (𝐹‘∅) = (𝐹‘∅)
8 oef1o.g . . . . . . . . 9 (𝜑𝐺:𝐵1-1-onto𝐷)
9 f1ocnv 6062 . . . . . . . . 9 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
108, 9syl 17 . . . . . . . 8 (𝜑𝐺:𝐷1-1-onto𝐵)
11 oef1o.f . . . . . . . 8 (𝜑𝐹:𝐴1-1-onto𝐶)
12 ssv 3588 . . . . . . . . 9 On ⊆ V
13 oef1o.b . . . . . . . . 9 (𝜑𝐵 ∈ On)
1412, 13sseldi 3566 . . . . . . . 8 (𝜑𝐵 ∈ V)
15 oef1o.a . . . . . . . . . 10 (𝜑𝐴 ∈ (On ∖ 1𝑜))
1615eldifad 3552 . . . . . . . . 9 (𝜑𝐴 ∈ On)
1712, 16sseldi 3566 . . . . . . . 8 (𝜑𝐴 ∈ V)
1812, 3sseldi 3566 . . . . . . . 8 (𝜑𝐷 ∈ V)
1912, 2sseldi 3566 . . . . . . . 8 (𝜑𝐶 ∈ V)
20 ondif1 7468 . . . . . . . . . 10 (𝐴 ∈ (On ∖ 1𝑜) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
2120simprbi 479 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1𝑜) → ∅ ∈ 𝐴)
2215, 21syl 17 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
235, 6, 7, 10, 11, 14, 17, 18, 19, 22mapfien 8196 . . . . . . 7 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
24 oef1o.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
25 f1oeq1 6040 . . . . . . . 8 (𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))) → (𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2624, 25ax-mp 5 . . . . . . 7 (𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2723, 26sylibr 223 . . . . . 6 (𝜑𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
28 eqid 2610 . . . . . . . . 9 {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp ∅}
2928, 2, 3cantnfdm 8444 . . . . . . . 8 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp ∅})
30 oef1o.z . . . . . . . . . 10 (𝜑 → (𝐹‘∅) = ∅)
3130breq2d 4595 . . . . . . . . 9 (𝜑 → (𝑥 finSupp (𝐹‘∅) ↔ 𝑥 finSupp ∅))
3231rabbidv 3164 . . . . . . . 8 (𝜑 → {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp ∅})
3329, 32eqtr4d 2647 . . . . . . 7 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
34 f1oeq3 6042 . . . . . . 7 (dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} → (𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
3533, 34syl 17 . . . . . 6 (𝜑 → (𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
3627, 35mpbird 246 . . . . 5 (𝜑𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷))
375, 16, 13cantnfdm 8444 . . . . . 6 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅})
38 f1oeq2 6041 . . . . . 6 (dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷)))
3937, 38syl 17 . . . . 5 (𝜑 → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷)))
4036, 39mpbird 246 . . . 4 (𝜑𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷))
41 f1oco 6072 . . . 4 (((𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶𝑜 𝐷) ∧ 𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷)) → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
424, 40, 41syl2anc 691 . . 3 (𝜑 → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
43 eqid 2610 . . . . 5 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
4443, 16, 13cantnff1o 8476 . . . 4 (𝜑 → (𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴𝑜 𝐵))
45 f1ocnv 6062 . . . 4 ((𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴𝑜 𝐵) → (𝐴 CNF 𝐵):(𝐴𝑜 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
4644, 45syl 17 . . 3 (𝜑(𝐴 CNF 𝐵):(𝐴𝑜 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
47 f1oco 6072 . . 3 ((((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶𝑜 𝐷) ∧ (𝐴 CNF 𝐵):(𝐴𝑜 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵)) → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
4842, 46, 47syl2anc 691 . 2 (𝜑 → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
49 oef1o.h . . 3 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
50 f1oeq1 6040 . . 3 (𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)) → (𝐻:(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷)))
5149, 50ax-mp 5 . 2 (𝐻:(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
5248, 51sylibr 223 1 (𝜑𝐻:(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  c0 3874   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ccom 5042  Oncon0 5640  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  𝑜 coe 7446  𝑚 cmap 7744   finSupp cfsupp 8158   CNF ccnf 8441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442
This theorem is referenced by:  infxpenc  8724
  Copyright terms: Public domain W3C validator