Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cantnfdm | Structured version Visualization version GIF version |
Description: The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
Ref | Expression |
---|---|
cantnffval.s | ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} |
cantnffval.a | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnffval.b | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
cantnfdm | ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnffval.s | . . . 4 ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑔 finSupp ∅} | |
2 | cantnffval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnffval.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | 1, 2, 3 | cantnffval 8443 | . . 3 ⊢ (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ))) |
5 | 4 | dmeqd 5248 | . 2 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ))) |
6 | fvex 6113 | . . . . 5 ⊢ (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ) ∈ V | |
7 | 6 | csbex 4721 | . . . 4 ⊢ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ) ∈ V |
8 | 7 | rgenw 2908 | . . 3 ⊢ ∀𝑓 ∈ 𝑆 ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ) ∈ V |
9 | dmmptg 5549 | . . 3 ⊢ (∀𝑓 ∈ 𝑆 ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ) ∈ V → dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ)) = 𝑆) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ dom (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (ℎ‘𝑘)) ·𝑜 (𝑓‘(ℎ‘𝑘))) +𝑜 𝑧)), ∅)‘dom ℎ)) = 𝑆 |
11 | 5, 10 | syl6eq 2660 | 1 ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 Vcvv 3173 ⦋csb 3499 ∅c0 3874 class class class wbr 4583 ↦ cmpt 4643 E cep 4947 dom cdm 5038 Oncon0 5640 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 supp csupp 7182 seq𝜔cseqom 7429 +𝑜 coa 7444 ·𝑜 comu 7445 ↑𝑜 coe 7446 ↑𝑚 cmap 7744 finSupp cfsupp 8158 OrdIsocoi 8297 CNF ccnf 8441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-seqom 7430 df-cnf 8442 |
This theorem is referenced by: cantnfs 8446 cantnfval 8448 cantnff 8454 oemapso 8462 wemapwe 8477 oef1o 8478 |
Copyright terms: Public domain | W3C validator |